US006922781B1

US 6,922,781 Bl

a2 United States Patent (10) Patent No.:

Shuster @#5) Date of Patent: Jul. 26, 2005
(54) METHOD AND APPARATUS FOR 5,832,208 A * 11/1998 Chenetal. 713/201
IDENTIFYING AND CHARACTERIZING 5,905,800 A * 5/1999 Moskowitz et al. 380/28
ERRANT ELECTRONIC FILES 5,978,791 A 11/1999 Farber et al. 70772
5,996,113 A * 11/1999 Kornetal.c....... 714/807
(75) Inventor: Gary Stephen Shuster, Oakland, CA 6,577,920 Bl * 6/2003 Hypponen etal. .oooeen.. 700/200
(US) 6,643,696 B2 * 11/2003 Davis et al.cu.e. 709/224
(73) Assignee: Ideaflood, Inc., Zephyr Cove, NV (US) * cited by examiner
(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35 Primary Examiner—Justin T. Darrow
U.S.C. 154(b) by 0 days. (74) Artorney, Agent, or Firm—O’Melveny & Myers LLP
(21) Appl. No.: 09/561,751 G7) ABSTRACT
(22) Filed: Apr. 29, 2000 A computer system includes a server having a memory
connected thereto. The server is adapted to be connected to
Related U.S. Application Data a network to permit remote storage and retrieval of data files
(60) Provisional application No. 60/132,093, filed on Apr. 30, from the memory. A file identification application is opera-
1999, provisional application No. 60/157,195, filed on Sep. tive with the server to identify errant files stored in the
30, 1999, and provisional application No. 60/142,332, filed memory. The file identification application provides the
on Jul. 3, 1999. functions of: (1) selecting a file stored in said memory; (2)
(51) Int. CL7 o GO6F 12/14 generating a unique checksum corresponding to the stored
(52) US.CL ..o 713/200; 713/188; 713/201 file; (3) comparing said unique checksum to each of a
(58) Field of Searchc.cccocooveeiiene. 713/165, 188, plurality of previously generated checksums, wherein the
713/200, 201 plurality of previously generated checksums correspond to
known errant files; and (4) marking the file for deletion from
(56) References Cited the memory if the unique checksum matches one of the

5,800,138 A *

U.S. PATENT DOCUMENTS

9/1998 Netiv ...cccceviviiinniiinnns 713/200

plurality of previously generated checksums.

68 Claims, 6 Drawing Sheets

CHECKSUM SUSPECT FILE

240
\‘ RETRIEVE -FILE FROM SUSPECT FILE LIST

l

242
JReAD INITIAL PORTION OF FILE |

l

244
\l GENERATE FIRST CHECKSUM |

246

TN COMPARE FIRST CHECKSUM T0 TABLE |

248

YES

MATCH "\ NO
?

250
\l READ LARGER PORTION OF F[LEI

252

\JGenERATE SECOND CHECKSM |

254
\J CoMPARE SECOND CHECKSUM T0 TABLE |

258

256.

NO

YES ADD FILE TO
DELETION LIST

U.S. Patent Jul. 26, 2005 Sheet 1 of 6 US 6,922,781 B1

USER COMPUTER FIG. 1
i T
122.// BROWSER he—f--—mmmmmme i “:

102

DISPLAY | | 124

\

|
|
i
i
= | INTERNET
=y]
Pace | N !
120/ 1% NN
T
I I]
114 7}72 E E E E 7.)32
L Y) N i
WEB HOST Chy SECONDARY
L L e
IDENTIFICATION Jo—f SERVER LA __ B g e
APPLICATION — .

116

DATA BASE

=
/
130

U.S. Patent Jul. 26, 2005 Sheet 2 of 6 US 6,922,781 B1
202

DIRECTORY SCAN

TRAVERSE DIRECTORY ENTRIES

206

/

YES REPORT PRESENCE

J OF SUSPECT FILES

204

SEQUENTIAL

FILES
?

208

TOTAL

SIZE GREATER

THAN THRESHOLD
?

212

FILE

NAME CONTAIN

SUSPECT TAGS
"

JES

214

FILE
REFERENCED -IN
ANY HTML
FILE
?

NO

218 216

NO

END OF
DIRECTORY
?

YES

END

FIG. ZA

U.S. Patent

Jul. 26, 2005

FILE CONTENT
REVIEW

Sheet 3 of 6

US 6,922,781 Bl

220-\\\-

RETRIEVE FILE FROM
DIRECTORY

222

226,

228

232

234\ END

FILE
CONTAINS

YES

COPYRIGHT
NOTICE
?

FILE
CONTENTS
MATCH INDICATED
FILE TYPE

FILE
CONTAIN
DATA PAST END
OF DATA
MARKER

END OF

224

-

REPORT PRESENCE
OF SUSPECT FILE

230

/

TRUNCATE
THE FILE

DIRECTORY
?

FIG. 2B

U.S. Patent Jul. 26, 2005 Sheet 4 of 6 US 6,922,781 B1

CHECKSUM SUSPECT FILE

240
\- RETRIEVE -FILE FROM SUSPECT FILE LIST

242 ’
N READ INITIAL PORTION OF FILE

244]
\ GENERATE FIRST CHECKSUM

246 ’
COMPARE FIRST CHECKSUM TO TABLE

248 MATCH \\NO
?

\
GENERATE SECOND CHECKSUM

252

250 YES
\ READ LARGER PORTION OF FILE

254 ’
\ COMPARE SECOND CHECKSUM TO TABLE 258

256 /

YES ADD FILE TO
DELETION LIST

NO

FIG. 2C

U.S. Patent Jul. 26, 2005 Sheet 5 of 6 US 6,922,781 B1

CHECKSUM GENERATION

.i 302
READ BYTE OF FILE |/

{

MULTIPLY BYTE BY J04
RUNNING CHECKSUM /

'

306
REVERSE THE RESULT "

1

308
TRUNCATE TO FIXED SIZE v

NO

310

REACHED
PREDETERMINED

FIG. 3

NUMBER OF
BYTES
?

YES

RETURN
N\ 312

U.S. Patent Jul. 26, 2005 Sheet 6 of 6 US 6,922,781 B1

CHECKSUM LIBRARY

402 l.
AN IDENTIFY SOURCE FILES

404
N\ GENERATE CHECKSUMS

|

STORE CHECKSUM. FILE NAWE,
06—

AND FILE LENGTH IN LIBRARY

406 ADD'L

FILES
?

NO

FIG. 4 oo ~

US 6,922,781 B1

1

METHOD AND APPARATUS FOR
IDENTIFYING AND CHARACTERIZING
ERRANT ELECTRONIC FILES

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application claims priority pursuant to 35 U.S.C. §
119(e) to U.S. Provisional Application No. 60/132,093, filed
Apr. 30, 1999; 60/142,332, filed Jul. 3, 1999; and 60/157,
195, filed Sep. 30, 1999. These applications are specifically
incorporated by reference herein in their entirety.

COPYRIGHT NOTICE

This patent document contains material subject to copy-
right protection. The copyright owner, Ideaflood, Inc., has
no objection to the reproduction of this patent document or
any related materials, as they appear in the files of the Patent
and Trademark Office of the United States or any other
country, but otherwise reserves all rights whatsoever.

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates to electronic files stored on
computers, and more a particularly, to methods and appa-
ratus for identifying and characterizing errant electronic files
stored on computer storage devices.

2. Description of Related Art

The use of public and shared computing environments has
proliferated due to the popularity of the Internet. Many
Internet service providers (ISP) offer Web hosting services at
low or no cost in which registered users can place their own
Web sites on the ISP’s servers. These individual Web sites
allow users to store and access electronic files that are
uploaded to the servers. As a result of this proliferation, the
administration of the large number of stored electronic files
has become an important aspect of such Web hosting ser-
vices. In view of the relative ease of public access to these
electronic file storage resources, there is also widespread
abuse of Web server space in which users upload files that
are offensive, illegal, unauthorized, or otherwise undesirable
and thus wasteful of storage resources. These file types are
predominantly of four types: music, video, software and
graphics. Many such files may contain pornography in
violation of the terms of use of the Web hosting service.
Moreover, the copying of these files to the Web server may
be in violation of U.S. copyright laws. Consequently, the
identification and removal of such files represents a signifi-
cant administrative burden to the Web hosting services. In
addition, the presence of certain files (such as depictions of
child pornography or copyrighted music files) on user com-
puters on corporate networks poses great legal risks to the
corporation.

Such files can be selected for review and characterized as
acceptable or unacceptable to the system administrator using
an automated or manual process. Unfortunately, many unde-
sirable files are not easily recognizable and cannot be
detected and characterized. A manual review of the content
of the files stored on the storage resource is usually not
economically feasible, and is also not entirely effective at
identifying undesirable files. Illicit users of Web hosting
services have devised numerous techniques for disguising
improper files wherein even easily recognizable file types
are disguised as less recognizable file types. One such
technique for disguising files is to split them into parts so
that (i) they cannot be detected by simple searches for large

10

15

20

25

30

35

40

45

50

55

60

65

2

files, and (ii) they can be downloaded or uploaded in smaller
chunks so that if a transfer is interrupted, the entire down-
load or upload is not lost. The split files may also be renamed
so as to hide their true file type. For example, a search for
oversized music files (*.mp3) would not turn up a huge file
named “song.txt” because it appears to the system as a text
file.

Another technique for hiding files is to append them to
files that legitimately belong on a web server. By way of
example, a Web site may be created called “Jane’s Dog’s
Home Page.” Jane gets ten small pictures of her dog,
converts them to a computer readable format (for example,
jpeg) and saves them on her computer. She then splits stolen,
copyrighted software into ten parts. She appends each part
to the end of one of the jpeg files. She then uploads these to
a web server. Upon a manual review of the web page, the
administrator of the site would not notice that the otherwise
innocuous dog pictures actually contain stolen software,
because each of the files would in fact display a photo of a
dog. Thus, even if the files were reported for manual review
by software doing a simple search for oversized files, the
files would be left on the server because they appear to be
legitimate: While these files can sometimes be identified by
name or size alone, these methods lead to unacceptable
numbers of false positives and false negatives as file sizes
and names are changed.

Free and low cost web hosting services typically rely on
advertising revenue to fund their operation. An additional
abuse of these web hosting services is that they can be
circumvented such that the advertisements are not displayed.
Typically, the advertising content is displayed on text or
hypertext pages. If a user stores graphics or other non-text
files on a free web hosting server, yet creates a web page
elsewhere on a different service that references these graph-
ics or non-text files, the free web hosting service pays the
storage and bandwidth costs for these files without deriving
the revenue from advertisement displays.

A need exists, therefore, to provide a method and appa-
ratus for identifying and characterizing errant electronic files
stored on computer storage devices, that makes use of a
variety of file attributes to reliably characterize files accord-
ing to pre-set criteria, that is not easily circumvented, and
that reduces the amount of manual review necessary to
verify proper operation.

SUMMARY OF THE INVENTION

In accordance with the teachings of the present invention,
a method and apparatus are provided for identifying and
characterizing files electronically stored on a computer
storage device. More particularly, an embodiment of the
invention further comprises a computer system that includes
a server having a memory connected thereto. The server is
adapted to be connected to a network to permit remote
storage and retrieval of data files from the memory. A file
identification application is operative with the server to
identify errant files stored in the memory. The file identifi-
cation application provides the functions of: (1) selecting a
file stored in said memory; (2) generating a unique check-
sum corresponding to the stored file; (3) comparing said
unique checksum to each of a plurality of previously gen-
erated checksums, wherein the plurality of previously gen-
erated checksums correspond to known errant files; and (4)
marking the file for deletion from the memory if the unique
checksum matches one of the plurality of previously gen-
erated checksums.

A more complete understanding of the method and appa-
ratus will be afforded to those skilled in the art, as well as

US 6,922,781 B1

3

a realization of additional advantages and objects thereof, by
a consideration of the following detailed description of the
preferred embodiment. Reference will be made to the
appended sheets of drawings that will first be described
briefly.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram illustrating a wide area network
in which a web host delivers information in the form of web
pages to users;

FIG. 2A is a flow chart illustrating a method of scanning
a file directory to identify suspect files stored in a database
in accordance with an embodiment of the invention;

FIG. 2B is a flow chart illustrating a method of reviewing
file contents to identify suspect files;

FIG. 2C is a flow chart illustrating a method of check-
summing the suspect files;

FIG. 3 is a flow chart illustrating a method of generating
checksum values; and

FIG. 4 is a flow chart illustrating a method of generating
a checksum library.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENT

The present invention satisfies the need for a method and
apparatus for identifying and characterizing errant electronic
files stored on computer storage devices, that makes use of
a variety of file attributes to reliably characterize files
according to pre-set criteria, that is not easily circumvented,
and that reduces the amount of manual review necessary to
verify proper operation. In the detailed description that
follows, like element numerals are used to describe like
elements illustrated in one or more of the figures.

Referring first to FIG. 1, a block diagram is illustrated of
a wide area network in which information is delivered to
users in the form of web pages. It is anticipated that the
present system operates with a plurality of computers that
are coupled together on a communications network, such as
the Internet or a wide area network. FIG. 1 depicts a network
that includes a user computer 120 that communicates with a
Web host 110 though communication links that include the
Internet 102. The user computer 120 may be any type of
computing device that allows a user to interactively browse
websites, such as a personal computer (PC) that includes a
Web browser application 122 executing thereon (e.g.,
Microsoft Internet Explorer™ or Netscape
Communicator™). The Web host 110 includes a server 112
that can selectively deliver graphical data files in the form of
HyperText Markup Language (HTML) documents to the
user computer 120 using the HyperText Transport Protocol
(HTTP). Currently, HTML 2.0 is the standard used for
generating Web documents, though it should be appreciated
that other coding conventions could also be used within the
scope of the present invention. The server 112 accesses
HTML documents stored within a database 116 that can be
at requested, retrieved and viewed at the user computer via
operation of the Web browser 122. The database 116 may
also contain many other types of files, including text,
graphics, music, and software files. It should be appreciated
that many different user computers may be communicating
with the server 112 at the same time.

As generally known in the art, a user identifies a Web page
that is desired to be viewed at the user computer 120 by
communicating an HTTP request from the browser appli-
cation 122. The HTTP request includes the Uniform

10

15

20

25

30

35

40

45

55

60

65

4

Resource Locator (URL) of the desired Web page, which
may correspond to an HTML document stored on the
database 116 of the Web host 110. The HTTP request is
routed to the server 112 via the Internet 102. The server 112
then retrieves the HITML document identified by the URL,
and communicates the HTML document across the Internet
102 to the browser application 122. The HTML document
may be communicated in the form of plural message packets
as defined by standard protocols, such as the Transport
Control Protocol/Internet Protocol (TCP/IP). A user may
also download any other type of file from the database 116
in the same manner.

FIG. 1 further illustrates a secondary Web host 130 having
a server 132 and database 134 similar to that of the primary
Web host 110. The user computer 120 can communicate with
the secondary Web host 130 in the same manner as described
above. Moreover, the primary Web host 110 can communi-
cate with the secondary Web host 130 in the same manner.
The pertinence of this communication path will become
more clear from the following description of the present
method. The Web host 110 further comprises a file identi-
fication application 114 that analyzes the data files stored on
the database 116 in order to identify errant files in accor-
dance with the present invention. The file identification
application 114 may comprise a program executing on the
same computer as the server 112, or may be executing on a
separate computer. The file identification application tests
various attributes of the files stored on the database to
determine whether they satisfy a particular profile that
corresponds to an errant file. Source code for a preferred
embodiment of a file identification application is attached
hereto as an exhibit.

A widely accepted characteristic of the Internet is that
files are copied relentlessly and without permission. This is
particularly true of illicit files, such as adult content, por-
nographic material or illegally copied software, music or
graphics. Thus, a photograph showing up on a single Web
site may be propagated to hundreds of other Web sites within
days. Although the file name is often changed, and trans-
mission errors often result in premature truncation of the file
(and thus a new file length), the initial portion of the file
remains identical as it is propagated throughout the Internet.
Another characteristic of the Internet is that illicit files, such
as music, video and software, all have one common
attribute—they are very large once reassembled. It is there-
fore necessary to (i) identify oversized files that have been
uploaded in parts, and (i) identify “hidden” files that are
appended to otherwise legitimate files. As will be further
described below, an aspect of the present invention takes
advantage of these characteristics of the Internet.

Referring now to FIGS. 2A-2C, a method for identifying
and characterizing files is illustrated in accordance with an
embodiment of the invention. The method would be
executed by the file identification application 114 described
above with respect to FIG. 1. FIG. 2A illustrates an exem-
plary method of scanning a file directory to identify suspect
files stored in a database. Suspect files are ones that are
suspected of being improper, and are marked for further
testing. The database 116 includes a directory that identifies
the files stored therein based on various attributes, including
file name and file size. It will be appreciated from the
following discussion that the method of FIGS. 2A-2C
relates specifically to the identification of pornographic
materials in view of the particular selection criteria that is
utilized; however, it will be understood to persons of ordi-
nary skill in the art that the selection criteria can be modified
to identify other types of illicit files. Starting at step 202, the

US 6,922,781 B1

5

application traverses the directory in order to analyze the
numerous directory entries. The application may construct a
relational database of the directory entries in order to sort on
the various fields of the directory. This step may be per-
formed repeatedly as a continuing process through this
identifying process, and would have to be repeated periodi-
cally to identify new files that are added to the database 116.

At step 204, the application determines whether there are
any sequentially numbered files within the directory.
Sequential files can be identified by analyzing and compar-
ing the file names to each other. One attribute of porno-
graphic materials is that they are often uploaded to a server
as part of a series of photographs. Thus, the file names may
include an embedded numerical designation such as
“xxx001.jpg” or “xxx002.jpg”. The user may define at what
level of folders the software will look for sequentially
numbered, lettered, or otherwise identified files. For
example, if a file server is divided into folders lettered from
“AA” to “ZZ”, and each folder contains Web sites with
names in which the first two letters correspond to the name
of the file folder, the user could decide to treat all folders on
the server as a single Web site, or to treat only Web sites
within the same folder as a single Web site, or to treat each
Web site individually. In the preferred embodiment, each
Web site is considered on its own without reference to other
Web sites, although the invention need not be limited in this
manner.

If any such sequential files are identified, they are reported
as suspect files at step 206. Then, the application returns to
step 202 and continues traversing through the directory
entries. If no sequential files are identified at step 204, the
application next determines at step 208 whether there are
any files having identical file sizes. Another attribute of
stolen intellectual property materials such as music files is
that they are often broken up into several pieces in order to
thwart their detection by simple searches for large files, and
also to enable them to be downloaded or uploaded in smaller
chunks to facilitate transfer. The presence of two or more
files having identical file size within the directory is an
indicator that they may be pieces of a single, larger, illicit
file. If there are plural files with identical file sizes, the
application determines at step 210 whether the total size of
the identical files summed together would exceed a prede-
termined threshold. As noted above, illicit files tend to be
unusually large, so the predetermined threshold would be
selected to correspond with the largest size of a typical
non-illicit file. If the total size does exceed the predeter-
mined threshold, then the identical files are reported as
suspect files at step 206.

More particularly, the application may manipulate the file
names to determine whether they are in fact likely to be parts
of a single, larger file. An alternative way to determine
whether files should be aggregated is to delete all numbers
from the file names. Any files that are identically named
after the elimination of all numbers would be marked as
potentially responsive and their names and aggregate size
would be reported. Of course, this can be limited to numbers
in conjunction with specified letters (such as r00, r41, etc.,
as the “r” denotation often indicates file compression and
division via the RAR method). Similarly, this can be limited
to specified file types (whether identified by the file type
suffix to the file name, or by examination of the actual
contents of the file) or files other than specified types (for
example, legitimate graphics files such as *.jpg are often
sequentially numbered and may be a good candidate for
exclusion). Next, using the original list of file names, any
files are identified that differ only by a user-defined number

10

15

20

25

30

35

40

45

50

55

60

65

6

of characters. Such files would be marked as potentially
responsive and their names and aggregate size would be
reported. Both of the foregoing methods can be set to either
ignore the file suffix or file type information or to utilize it.
Next, using the original list of file names and sizes, files that
are of the same size (or within a user-defined number of
bytes of being of the same size) are identified. Any such files
are marked as potentially responsive and their names and
aggregate size would be reported.

If no identical files are identified at step 208, or if the total
size does not exceed the predetermined threshold at step
210, the application proceeds to step 212 where it is deter-
mined whether the file names contain any suspect tags. An
example of a suspect tag is “xxx” which is often used in
association with pornographic materials. Another example
of a suspect tag is “crc”, which refers to a cyclical redun-
dancy check (CRC), i.e., a known error checking technique
used to ensure the accuracy of transmitting digital data.
When a large file has been broken up into plural smaller
files, it is common to include a CRC file in order verity the
accurate reconstruction of the large file. The presence of a
file having a “crc” tag is an indicator that an illicit or illegal
file has been uploaded to the server. A table of predetermined
suspect tags may be generated and periodically updated to
reflect current usage within Internet newsgroups, Web sites
and other facilities for trafficking in pornographic or illicit
materials. If any file names containing suspect tags are
identified, then the associated files are reported as suspect
files at step 206.

If no suspect tags are identified at step 212, the application
proceeds to step 214 where it is determined whether the file
is referenced in any HTML file contained within the direc-
tory. Ideally, the files stored on the database would each be
linked to HTML files contained within the director. Where
a file is not linked to a local HTML file, this is an indicator
that a user is storing graphics or other non-text files that are
linked to a Web page hosted elsewhere on a different service.
As described above, this situation is undesirable since the
free web hosting service pays the storage and bandwidth
costs for these files without deriving the revenue from
advertisement displays. Accordingly, any file names that are
not referenced in an HTML file contained within the direc-
tory are reported as suspect files at step 206. Alternatively,
every file bearing a file type capable of causing a web
browser to generate hypertext links (ie. *.htm, *.html,
* shtml, etc.) may also be reviewed. The hypertext links may
be then compared against a list of illegal links (for example,
links to adult-content Web sites). Any file that contains a
hypertext link to such a site is reported as suspect. If all files
on the directory are properly referenced in HTML files or
contain no illegal links, the application determines whether
the end of the directory has been reached at step 216. If the
end of the directory is not yet reached, the application
returns to step 202 to continue traversing the directory and
identifying suspect files. Otherwise, this portion of the
application ends at step 218.

Once a review of the directory entries is complete, the
next step is to review the content of the files listed on the
directory to see if additional files should be added to the
suspect file list. This review may address every file listed on
the directory not already listed on the suspect file list, or may
be further narrowed using particular selection criteria spe-
cific to the type of illicit file, i.e., pornography, copyright
infringement, etc. FIG. 2B illustrates an exemplary method
of reviewing file contents. At step 220, the application
retrieves a file from the directory. At step 222, the retrieved
file is examined to identify whether the file contains a

US 6,922,781 B1

7

copyright notice or the symbol ©. The presence of a copy-
right notice in the file is an indicator that the file has been
uploaded to the server unlawfully, and likely contains
graphics, text, software or other material that is protected by
copyright. Any files containing the copyright notice would
be reported as a suspect file and added to the suspect file list
at step 224. This copyright notice check procedure can also
be used to ensure compliance with appropriate copyright
laws. Alternatively, the file can be simply marked for dele-
tion. The application then returns to step 220 and retrieves
the next file.

If the file does not contain a copyright notice, the appli-
cation passes to step 226, in which the retrieved file is
examined to determine whether the file structure is as
expected for a file of the indicated type. For example, the file
type “jpg” should contain a header structure with the values
“255 216 255 224”. Alternatively, files can be checked to
ensure that they actually contain the type of data described
by the file type marker (i.e., a file named *.jpg should
contain a jpg image). If the file does not match the indicated
file type, the file can be reported as a suspect file and added
to the suspect file list at step 224, or simply marked for
deletion. Another alternative approach would be to replace
files containing data of a type different than that indicated by
their file type marker by a file stating that the original file
was corrupted. Yet another approach would be to retype the
file (i.e. * jpg can be retyped to *.zip if it contained a zipped
file and not a jpg). Further, certain file types can be aggre-
gated. For example, *.gif and * jpg files may be aggregated
as a single file type, and a file bearing a *.jpg type is
considered valid if it contains either a gif or a jpg image.
This greatly reduces the problem of mistakenly deleting a
file that a consumer has innocently misnamed, The applica-
tion then returns to step 220 and retrieves the next file.

If the file contents do match the indicated file type, the
application determines at step 228 whether the file contains
data extending past the end of data marker. If this marker
appears before the true end of file, then it is likely that the
additional data following the end of data marker constitutes
a portion of an illicit file. At step 230, the file is truncated at
the end of file marker. The application then returns to step
220 and retrieves the next file. If the file does not contain
data past the end of data marker, the application proceeds to
step 232 in which it is determined whether the end of the
directory has been reached. If there are still additional files
in the directory to review, the application returns to step 220
and retrieves the next file. If there are no additional files, the
file content review process ends at step 234.

After the files within the directory have been reviewed
and a list of suspect files generated, the next step is to
checksum the suspect files and compare the results against
a library of checksum values corresponding to known illicit
files. The generation of this list of known illicit files will be
described below with respect to FIG. 4. FIG. 2C illustrates
an exemplary method of checksumming the suspect files. A
checksum is a unique number based upon a range or ranges
of bytes in a file. Unlike checksums as they are traditionally
used in the computing field, the checksum described herein
is not related to the total number of bytes used to generate
the number, thus reducing a traditional problem with
checksums, namely that similar file lengths are more likely
to generate the same checksum than are dissimilar file
lengths. In a preferred embodiment of the invention, two
separate checksums are generated for a file corresponding to
two different length portions of the file. While it is possible
that the first checksum based on a shorter length portion of
the file may falsely match the checksum of another file, it is

10

15

20

25

30

35

40

45

50

55

60

65

8

highly unlikely that the second checksum would result in a
false match. In addition, the use of an initial checksum based
upon a small amount of data reduces the burden on the
network and file server. This reduction is a result of the
ability to disqualify a file that does not match the first
checksum without the need to read the larger amount of data
necessary to generate the second checksum.

More particularly, at step 240, the application retrieves a
file from the database identified on the suspect file list. Then,
at step 242, the application reads a first portion of the suspect
file. In an embodiment of the invention, the first portion
comprises the first one-thousand (1,024) bytes of the file. A
first checksum based on this first portion is generated at step
244. The first checksum is then compared to a library of
known checksum values at step 246, and at step 248 it is
determined whether there is a match between the first
checksum and the library. This step provides an initial screen
of a file. If there is no match, then the file likely does not
correspond to a known illicit file. The file may nevertheless
constitute improper or unlawful material, and it may there-
fore be advisable to manually review the file to evaluate its
contents. If the file does contain improper or unlawful
material, its checksum may be added to the library of known
checksums and the file marked for deletion from the data-
base. Conversely, if the manual review does not reveal the
file to be improper or unlawful, or based simply on the
negative result of the first checksum comparison, the file is
removed from the suspect file list, and the application
returns to step 240 to retrieve the next file from the suspect
file list.

If there is a match based on the initial screen of the file,
the application proceeds to step 250 in which a second
portion of the file is read. In an embodiment of the invention,
the second portion comprises the first ten-thousand (10,240)
bytes of the file. A second checksum based on this second
portion is generated at step 252. The second checksum is
then compared to a library of known checksum values at step
254, and at step 256 it is determined whether there is a match
between the second checksum and the library. This step
provides a more conclusive determination as to whether the
file corresponds to a known improper or unlawful file. If
there is a match, the file is marked for deletion (or other
treatment) at step 258, and the application returns to step 240
to retrieve the next suspect file. If there is not a match, the
file is removed from the suspect file list, and the application
again returns to step 240 to retrieve the next suspect file.

The files that are marked for deletion may be listed along
with the pertinent information in a database (either via
numerous individual files, an actual database such as SQL
Server, or otherwise). This database may be manually
reviewed and files that should not be deleted removed from
the database. A simple file deletion program may then be run
that deletes any file in the database.

As noted above, the first one-thousand bytes and the first
ten-thousand bytes are used for the two checksums, respec-
tively. For most applications, the use of the entire file or a
larger portion of the file is not necessary and indeed may
slow the process; however, there is no reason why the entire
file or any other subset of the file could not be used. In an
alternative embodiment, the first and last portions of the file
are used for checksumming, although premature file trun-
cation then becomes a way to defeat the screen. It is also
possible to use other data to improve the quality of the initial
screen, such as the length of the file and the file name. Any
file matching the initial screen criteria is then checked
against one or more checksum tests. Yet another alternative
embodiment is to simultaneously generate both the initial

US 6,922,781 B1

9

screen checksum and the confirmation checksum in a single
file read, thereby reducing the number of distinct disk access
events. Verification is optional when the initial screen is
performed using a checksum, as the checksum denotes a
nearly certain match.

In an alternative embodiment of the invention, the present
method for identifying and characterizing files can be used
to block music piracy on the Internet. Each music CD carries
certain identifying data that permits unique identification of
that CD. MP3 encoders can be configured to encode this
information into the first bytes of each MP3 file. As such, the
MP3 file would carry the signature of the music CD it was
created from. This would permit a scan of all files on a server
for the signature code of a particular CD. When such a code
is found, it can be checked against a database of copyrighted
music and any matches marked for deletion and/or review.
An alternative embodiment would be to prevent MP3 play-
ers from working properly unless the unique identifier from
a CD is found, and that unique identifier can be checked for
validity against a checksum or an Internet database.

There are numerous possible algorithms that may be
utilized to generate a checksum, with an exemplary algo-
rithm shown in FIG. 3. At step 302, a single byte of the file
is read. The byte is then multiplied by the current value of
the checksum at step 304. On the first pass through the
algorithm, a value of one is used for the current value of the
checksum. Next, at step 306, the result of the previous step
is reversed (e.g., 1234 becomes 4321). At step 308, the result
of the previous step is truncated to a predetermined number
of digits (e.g., with the predetermined number of digits being
nine, 1,234,567,890 becomes 123,456,789). At step 310, the
algorithm determines whether the predetermined number of
bytes has been reached. As described above, checksums are
performed using the first one-thousand (1,024) and ten-
thousand (10,240) bytes in accordance with a preferred
embodiment of the invention. If the predetermined number
of bytes has not been reached, the algorithm returns to step
302 and continues with the next byte. Conversely, if the
predetermined number of bytes has been reached, the algo-
rithm ends at step 312. An advantage of this algorithm is that
the checksum that is generated is independent of the number
of bytes that are utilized. This way, the likelihood of false
matches is substantially reduced even though the same
number of bytes are used to calculate the checksums.

It should be appreciated to persons having ordinary skill
in the art the many other types of algorithms could be
utilized to achieve results specific to certain types of files. In
an alternative embodiment of the invention, checksums of
graphics files may be generated based on vector graphics
analysis of the files. The graphics file may be reduced to its
vector graphics components. The resulting vector graphics
image is then reduced to a checksum representing the vector
graphics image. The checksum is then checked against a list
of checksums generated in a similar matter against known or
suspected inappropriate images.

An alternative method of generating a unique checksum
for a graphics file is by dividing an image into quadrants or
other blocks and comparing the relationships between the
zones into which the image is divided. For example, the
relative ratio of red to green, green to blue, and blue to red
in each of the zones may be calculated, and then recorded.
A file could then be altered in a minor way (such as by
altering several bits) without defeating the ability of the
software to find the file.

Referring now to FIG. 4, an exemplary process is illus-
trated for generating the library of checksum values. At step

10

15

20

25

30

45

55

60

65

10

402, a source of known illicit files is identified. This may be
performed by manually reviewing files already stored on the
database 116 of the Web host 110, such as the files identified
as suspect (see FIGS. 2A-2B). Alternatively, sources of
illicit files outside of the Web host 110 may be sought, such
as located on a secondary Web host 130. Certain Web servers
may be assumed to contain files matching the criteria (i.e.,
a Web host that accepts adult content and runs adult oriented
ads over that content will contain nearly entirely adult
material). Alternatively, a target newsgroup (e.g.,
alt.binaries.pictures.erotica.female) can provide a source of
illicit files. Once an adequate source of files is identified,
checksum values are generated at step 404 in the same
manner as described above with respect to FIG. 3. Then, at
step 406, the checksum is stored in a library along with the
file name and file length. Lastly, at step 408, it is determined
whether there are other files associated with the identified
source of files that can be checksummed in order to further
enlarge the library. As will be further described below, the
identification of a single source of illicit material will
invariably lead to other sources of material. Thus, the library
can be expanded at an exponential rate. The process of FIG.
4 is repeated for each new source of illicit material. If no
additional source files can be located, the process terminates
at step 410.

Once a single file is located matching a predefined criteria
(i.e., adult content), it is almost certain that other files also
matching the same criteria will be found together with or in
proximity to the original matching file (e.g., a Web site
having one pornographic photograph will likely contain
others with it). All files located with the matching file can be
automatically checksummed, or can be checksummed after
a manual review. Thus, the library of checksums is
expanded. In view of the nature and prevalence of illicit
material on the Internet, it is also likely that the matching
files will also appear on other Web sites, and will thus lead
to other files meeting the selection criteria that can them-
selves be checksummed. The expansion of the checksum
library is thus exponential, and nearly the entire body of
illicit materials on the Internet can be checksummed in this
manner. This checksum amplification method in the auto-
mated checksumming modality can be further refined by
requiring that any given checksummed file appear together
with a minimum number of other checksummed files on a
minimum number of Web sites before the file represented by
the checksum is considered to match the selection criteria.

It should be appreciated that one cannot defeat the present
invention by simply altering an illicit image file. Although
the alteration of an image file may prevent it from matching
an existing checksum, the altered image will invariably be
copied and posted on a new Web site together with
unaltered, checksummed images, and will be inevitably
checksummed using the foregoing process. Furthermore, the
process can be modified so as to allow automated check-
summing with a greatly reduced risk of the generation of
checksums for files that do not match the selection criteria.
One approach is to set a file size floor and ceiling and/or file
type limitation. Another approach is to create and maintain
a list of excluded files, including all publicly available “clip
art” and popular mainstream advertising banners, as well as
files that show up frequency on legitimate Web sites. Yet
another alternative approach is to require an image to appear
in proximity to known illicit files, such as files that match
existing checksums, a minimum number of times before
being added to the checksum library.

Furthermore, certain graphics are quite common in certain
types of Web sites. For example, pornographic Web sites

US 6,922,781 B1

11

almost always contain a “banner” advertising membership in
a commercial pornography Web site. There is a very limited
universe of such banners. By generating checksums for all
available pornographic banners, it is possible to locate
nearly all pornographic web sites. Using the checksum
amplification method described above, these advertising
banner checksums would quickly lead to a very comprehen-
sive catalog of pornographic material checksums. Similarly,
illegally copied software sites often have “warez” banners.
Other target file types have banners and common graphics
associated with them as well.

Files matching the selection criteria can also be located by
searching for hyperlinks to checksummed files or to sites
known to contain inappropriate material. Thus, whenever a
checksum is matched, the URL of the material located is
recorded. Any HTML page that links to that material is then
identified as likely containing material matching the selec-
tion criteria. All other graphics referenced by that HTML
page and/or in the same Web site may then be automatically
checksummed or flagged for manual review and checksum-
ming.

Certain key words may also be searched for on a Web site.
Thus, for example, the word “fuck” in close association with
“lolita” should flag a site as likely to contain child pornog-
raphy. This method is better used in conjunction with a
manual review so as to avoid checksumming files that do not
match the selection criteria, although it can also be used as
an enhancement to the checksum amplification method to
confirm that checksums should be automatically generated.

The results of these searches can be returned in a regular
text file. Alternatively, the results may be returned in a
formatted HTML file that interconnects with the file man-
agement system. The HTML file should display a copy of all
files on a given Web site matching the checksum(s), all user
information as well as other sites using the same password,
with the same user name, with the same IP address, or the
same e-mail address, and the options to delete the site(s),
modify the records, delete the materials, etc. Furthermore,
for those file types that cannot be graphically displayed by
a Web browser, the “server” modality (see code attached as
Exhibit) should be used to return a “file present” or “file
absent” graphic to indicate whether the file is present or
absent.

In an alternative embodiment of the invention, the present
method for identifying and characterizing files may be
implemented in a real-time manner to review files as they are
uploaded to the Web server. In yet another embodiment of
the invention, the present method for identifying and char-
acterizing files may be used to check the contents of desktop
computers within a business. Thus, for example, with file
and access permissions set correctly, the software could
determine whether pornography, child pornography, copy-
righted software, or other problematic materials exist on the
computers used by employees. Appropriate reporting could
then be accomplished. This can also be accomplished by
running the software in a standalone package on desktop
computers (by parents, for example). For file systems that
require locally running software, the software can also be
combined with necessary software (for example, the detec-
tion software could also serve as the e-mail program for the
user, or as the mechanism whereby the user logs into their
main server).

An important advantage of the use of checksums to
identify and characterize illicit files is that the customer
service employees of a Web hosting company can determine
with certainty that a file contains illegal contents without

10

15

20

25

30

35

40

45

50

55

60

65

12

actually viewing the file. This is particularly important in
retaining employees, as many individuals can become
uncomfortable or disturbed by having to view illicit, violent
or illegal images. For example, by having a library of child
pornography checksums, the computer can simply report
“child porn found”, and no employee need ever see the
image. The customer service employees can then load the
illegal file onto a disk to deliver to law enforcement, and
terminate the customer account. Another advantage of using
the checksums is that it eliminates the need for the Web
hosting company to maintain copies of illegal or contraband
files in order to verify that files match them. Thus, it is
unnecessary to keep a copy of an illegal picture or stolen
music file in order to check whether files found on the server
match the illicit files.

Lastly, the present method for identifying and character-
izing files could be used to provide automatic notification to
Web host customers and other interested parties Any time a
file is reported as illegal, a database containing a list of
customer data may be accessed to obtain the e-mail address
of the site operator. An automated e-mail message may be
generated (optionally copied to the Web hosting company’s
staff) indicating that the site has been marked for review
and/or deletion. Alternatively, the fax number of the cus-
tomer may be accessed and the same message sent via fax.
Alternatively, the phone number may be accessed and a
text-to-voice system used to send an automated telephone
message. Alternatively, postal mail may be printed with the
customer’s address and the same message.

Having thus described a preferred embodiment of a
method and apparatus for identifying and characterizing
errant electronic files, it should be apparent to those skilled
in the art that certain advantages have been achieved. It
should also be appreciated that various modifications,
adaptations, and alternative embodiments thereof may be
made within the scope and spirit of the present invention.
The invention is further defined by the following claims.

What is claimed is:

1. A method for identifying and characterizing stored
electronic files, said method comprising:

selecting a file stored in a memory, said selecting step

comprising identifying suspect files from a plurality of
files stored in said memory, wherein said identifying
step further comprises identifying sequential files from
a directory of said memory;

generating a unique checksum corresponding to said

stored file;

comparing said unique checksum to each of a plurality of

previously generated checksums, said plurality of pre-
viously generated checksums corresponding to known
errant files; and

marking said file for deletion from said memory if said

unique checksum matches one of said plurality of
previously generated checksums.

2. The method according to claim 1, further comprising
obtaining a source of known errant files to generate said
plurality of previously generated checksums therefrom.

3. The method according to claim 1, further comprising
presenting said file marked for deletion for human review
prior to deleting said file.

4. The method according to claim 1, further comprising
automatically notifying a third party that said file has been
marked for deletion.

5. A method for identifying and characterizing stored
electronic files, said method comprising:

selecting a file stored in a memory, said selecting step

comprising identifying suspect files from a plurality of

US 6,922,781 B1

13

files stored in said memory, wherein said identifying
step further comprises identifying identically sized files
from a directory of said memory;

generating a unique checksum corresponding to said

stored file;

comparing said unique checksum to each of a plurality of

previously generated checksums, said plurality of pre-
viously generated checksums corresponding to known
errant files; and

marking said file for deletion from said memory if said

unique checksum matches one of said plurality of
previously generated checksums.
6. The method according to claim 5, wherein said iden-
tifying step further comprises determining whether an aggre-
gate size of plural identically sized files exceeds a prede-
termined threshold.
7. The method according to claim 5, further comprising
obtaining a source of known errant files to generate said
plurality of previously generated checksums therefrom.
8. The method according to claim 5, further comprising
presenting said file marked for deletion for human review
prior to deleting said file.
9. The method according to claim 5, further comprising
automatically notifying a third party that said file has been
marked for deletion.
10. A method for identifying and characterizing stored
electronic files, said method comprising:
selecting a file stored in a memory, said selecting step
comprising identifying suspect files from a plurality of
files stored in said memory, wherein said identifying
step further comprises identifying files having content
that fail to match their associated file type;

generating a unique checksum corresponding to said
stored file;

comparing said unique checksum to each of a plurality of

previously generated checksums, said plurality of pre-
viously generated checksums corresponding to known
errant files; and

marking said file for deletion from said memory if said

unique checksum matches one of said plurality of
previously generated checksums.
11. The method according to claim 10, further comprising
obtaining a source of known errant files to generate said
plurality of previously generated checksums therefrom.
12. The method according to claim 10, further comprising
presenting said file marked for deletion for human review
prior to deleting said file.
13. The method according to claim 10, further comprising
automatically notifying a third party that said file has been
marked for deletion.
14. A method for identifying and characterizing stored
electronic files, said method comprising:
selecting a file stored in a memory, said selecting step
comprising identifying suspect files from a plurality of
files stored in said memory, wherein said identifying
step further comprises identifying files containing data
that extends beyond an end of data marker;

generating a unique checksum corresponding to said
stored file;

comparing said unique checksum to each of a plurality of

previously generated checksums, said plurality of pre-
viously generated checksums corresponding to known
errant files; and

marking said file for deletion from said memory if said

unique checksum matches one of said plurality of
previously generated checksums.

10

15

20

25

30

35

40

45

50

55

60

65

14

15. The method according to claim 14, further comprising
truncating said identified files after said end of data marker.

16. The method according to claim 14, further comprising
obtaining a source of known errant files to generate said
plurality of previously generated checksums therefrom.

17. The method according to claim 14, further comprising
presenting said file marked for deletion for human review
prior to deleting said file.

18. The method according to claim 14, further comprising
automatically notifying a third party that said file has been
marked for deletion.

19. A method for identifying and characterizing stored
electronic files, said method comprising:

selecting a file stored in a memory;

generating a unique checksum corresponding to said
stored file, comprising generating a first checksum
corresponding to a first one-thousand bytes of said
stored file and a second checksum corresponding to a
second portion of said stored file;

comparing said unique checksum to each of a plurality of
previously generated checksums, said plurality of pre-
viously generated checksums corresponding to known
errant files; and

marking said file for deletion from said memory if said
unique checksum matches one of said plurality of
previously generated checksums.

20. The method according to claim 19, further comprising
obtaining a source of known errant files to generate said
plurality of previously generated checksums therefrom.

21. The method according to claim 19, further comprising
presenting said file marked for deletion for human review
prior to deleting said file.

22. The method according to claim 19, further comprising
automatically notifying a third party that said file has been
marked for deletion.

23. A method for identifying and characterizing stored
electronic files, said method comprising:

selecting a file stored in a memory;

generating a unique checksum corresponding to said
stored file, comprising generating a first checksum
corresponding to a first portion of said stored file and a
second checksum corresponding to a first ten-thousand
bytes of said stored file;

comparing said unique checksum to each of a plurality of
previously generated checksums, said plurality of pre-
viously generated checksums corresponding to known
errant files; and

marking said file for deletion from said memory if said
unique checksum matches one of said plurality of
previously generated checksums.

24. The method according to claim 23, further comprising
obtaining a source of known errant files to generate said
plurality of previously generated checksums therefrom.

25. The method according to claim 23, further comprising
presenting said file marked for deletion for human review
prior to deleting said file.

26. The method according to claim 23, further comprising
automatically notifying a third party that said file has been
marked for deletion.

27. A method for identifying and characterizing stored
electronic files, said method comprising:

selecting a file stored in a memory;

generating a unique checksum corresponding to said
stored file, comprising generating a unique checksum
for graphics files based on vector graphics analysis;

US 6,922,781 B1

15

comparing said unique checksum to each of a plurality of
previously generated checksums, said plurality of pre-
viously generated checksums corresponding to known
errant files; and
marking said file for deletion from said memory if said
unique checksum matches one of said plurality of
previously generated checksums.
28. The method according to claim 27, further comprising
obtaining a source of known errant files to generate said
plurality of previously generated checksums therefrom.
29. The method according to claim 27, further comprising
presenting said file marked for deletion for human review
prior to deleting said file.
30. The method according to claim 27, further comprising
automatically notifying a third party that said file has been
marked for deletion.
31. A method for identifying and characterizing stored
electronic files, said method comprising:
selecting a file stored in a memory;
generating a unique checksum corresponding to said
stored file, comprising dividing a graphical image file
into blocks and comparing relationships between said
blocks;
comparing said unique checksum to each of a plurality of
previously generated checksums, said plurality of pre-
viously generated checksums corresponding to known
errant files; and
marking said file for deletion from said memory if said
unique checksum matches one of said plurality of
previously generated checksums.
32. The method according to claim 31, further comprising
obtaining a source of known errant files to generate said
plurality of previously generated checksums therefrom.
33. The method according to claim 31, further comprising
presenting said file marked for deletion for human review
prior to deleting said file.
34. The method according to claim 31, further comprising
automatically notifying a third party that said file has been
marked for deletion.
35. A computer system, comprising:
a server having a memory connected thereto, said server
being adapted to be connected to a network to permit
remote storage and retrieval of data files from said
memory; and
a file identification application operative with said server
to identify errant files stored in said memory, said file
identification application providing the functions of:
selecting a file stored in said memory, said selecting
function comprising identifying suspect files from a
plurality of files stored in said memory, wherein said
identifying function further comprises identifying
sequential files from a directory of said memory;

generating a unique checksum corresponding to said
stored file;

comparing said unique checksum to each of a plurality
of previously generated checksums, said plurality of
previously generated checksums corresponding to
known errant files; and

marking said file for deletion from said memory if said
unique checksum matches one of said plurality of
previously generated checksums.

36. The computer system according to claim 35, wherein
said file identification application further provides the func-
tion of obtaining a source of known errant files to generate
said plurality of previously generated checksums therefrom.

37. The computer system according to claim 35, wherein
said file identification application further provides the func-

10

15

25

30

35

40

45

50

55

60

65

16

tion of presenting said file marked for deletion for human
review prior to deleting said file.
38. The computer system according to claim 35, wherein
said file identification application further provides the func-
tion of automatically notifying a third party that said file has
been marked for deletion.
39. A computer system, comprising:
a server having a memory connected thereto, said server
being adapted to be connected to a network to permit
remote storage and retrieval of data files from said
memory; and
a file identification application operative with said server
to identify errant files stored in said memory, said file
identification application providing the functions of:
selecting a file stored in said memory, said selecting
function comprising identifying suspect files from a
plurality of files stored in said memory, wherein said
identifying function further comprises identifying
identically sized files from a directory of said
memory;

generating a unique checksum corresponding to said
stored file;

comparing said unique checksum to each of a plurality
of previously generated checksums, said plurality of
previously generated checksums corresponding to
known errant files; and
marking said file for deletion from said memory if said
unique checksum matches one of said plurality of
previously generated checksums.
40. The computer system according to claim 39, wherein
said identifying function further comprises determining
whether an aggregate size of plural identically sized files
exceeds a predetermined threshold.
41. The computer system according to claim 39, wherein
said file identification application further provides the func-
tion of obtaining a source of known errant files to generate
said plurality of previously generated checksums therefrom.
42. The computer system according to claim 39, wherein
said file identification application further provides the func-
tion of presenting said file marked for deletion for human
review prior to deleting said file.
43. The computer system according to claim 39, wherein
said file identification application further provides the func-
tion of automatically notifying a third party that said file has
been marked for deletion.
44. A computer system, comprising:
a server having a memory connected thereto, said server
being adapted to be connected to a network to permit
remote storage and retrieval of data files from said
memory; and
a file identification application operative with said server
to identify errant files stored in said memory, said file
identification application providing the functions of:
selecting a file stored in said memory, said selecting
function comprising identifying suspect files from a
plurality of files stored in said memory, wherein said
identifying function further comprises identifying
files having content that fails to match their associ-
ated file type;

generating a unique checksum corresponding to said
stored file;

comparing said unique checksum to each of a plurality
of previously generated checksums, said plurality of
previously generated checksums corresponding to
known errant files; and

marking said file for deletion from said memory if said
unique checksum matches one of said plurality of
previously generated checksums.

US 6,922,781 B1

17

45. The computer system according to claim 44, wherein
said file identification application further provides the func-
tion of obtaining a source of known errant files to generate
said plurality of previously generated checksums therefrom.

46. The computer system according to claim 44, wherein
said file identification application further provides the func-
tion of presenting said file marked for deletion for human
review prior to deleting said file.

47. The computer system according to claim 44, wherein
said file identification application further provides the func-
tion of automatically notifying a third party that said file has
been marked for deletion.

48. A computer system, comprising:

a server having a memory connected thereto, said server
being adapted to be connected to a network to permit
remote storage and retrieval of data files from said
memory; and

a file identification application operative with said server
to identify errant files stored in said memory, said file
identification application providing the functions of:
selecting a file stored in said memory, said selecting
function comprising identifying suspect files from a
plurality of files stored in said memory, wherein said
identifying function further comprises identifying
files containing data that extends beyond an end of
data marker;

generating a unique checksum corresponding to said
stored file;

comparing said unique checksum to each of a plurality
of previously generated checksums, said plurality of
previously generated checksums corresponding to
known errant files; and

marking said file for deletion from said memory if said
unique checksum matches one of said plurality of
previously generated checksums.

49. The computer system according to claim 48, wherein
said identifying function further comprises truncating said
identified files after said end of data marker.

50. The computer system according to claim 48, wherein
said file identification application further provides the func-
tion of obtaining a source of known errant files to generate
said plurality of previously generated checksums therefrom.

51. The computer system according to claim 48, wherein
said file identification application further provides the func-
tion of presenting said file marked for deletion for human
review prior to deleting said file.

52. The computer system according to claim 48, wherein
said file identification application further provides the func-
tion of automatically notifying a third party that said file has
been marked for deletion.

53. A computer system, comprising:

a server having a memory connected thereto, said server
being adapted to be connected to a network to permit
remote storage and retrieval of data files from said
memory; and

a file identification application operative with said server
to identify errant files stored in said memory, said file
identification application providing the functions of:
selecting a file stored in said memory;
generating a unique checksum corresponding to said
stored file, comprising generating a first checksum
corresponding to a first one-thousand bytes of said
stored file and a second checksum corresponding to
a second portion of said stored file;

comparing said unique checksum to each of a plurality
of previously generated checksums, said plurality of

10

15

25

35

40

45

50

55

60

65

18

previously generated checksums corresponding to
known errant files; and
marking said file for deletion from said memory if said
unique checksum matches one of said plurality of
previously generated checksums.
54. The computer system according to claim 53, wherein
said file identification application further provides the func-
tion of obtaining a source of known errant files to generate
said plurality of previously generated checksums therefrom.
55. The computer system according to claim 53, wherein
said file identification application further provides the func-
tion of presenting said file marked for deletion for human
review prior to deleting said file.
56. The computer system according to claim 53, wherein
said file identification application further provides the func-
tion of automatically notifying a third party that said file has
been marked for deletion.
57. A computer system, comprising:
a server having a memory connected thereto, said server
being adapted to be connected to a network to permit
remote storage and retrieval of data files from said
memory; and
a file identification application operative with said server
to identify errant files stored in said memory, said file
identification application providing the functions of:
selecting a file stored in said memory;
generating a unique checksum corresponding to said
stored file, comprising generating a first checksum
corresponding to a first portion of said stored file and
a second checksum corresponding to a first ten-
thousand bytes of said stored file;

comparing said unique checksum to each of a plurality
of previously generated checksums, said plurality of
previously generated checksums corresponding to
known errant files; and
marking said file for deletion from said memory if said
unique checksum matches one of said plurality of
previously generated checksums.
58. The computer system according to claim 57, wherein
said file identification application further provides the func-
tion of obtaining a source of known errant files to generate
said plurality of previously generated checksums therefrom.
59. The computer system according to claim 57, wherein
said file identification application further provides the func-
tion of presenting said file marked for deletion for human
review prior to deleting said file.
60. The computer system according to claim 57, wherein
said file identification application further provides the func-
tion of automatically notifying a third party that said file has
been marked for deletion.
61. A computer system, comprising:
a server having a memory connected thereto, said server
being adapted to be connected to a network to permit
remote storage and retrieval of data files from said
memory; and
a file identification application operative with said server
to identify errant files stored in said memory, said file
identification application providing the functions of:
selecting a file stored in-said memory;
generating a unique checksum corresponding to said
stored file, wherein said generating function further
comprises generating a unique checksum for graph-
ics files based on vector graphics analysis;

comparing said unique checksum to each of a plurality
of previously generated checksums, said plurality of
previously generated checksums corresponding to
known errant files; and

US 6,922,781 B1

19

marking said file for deletion from said memory if said
unique checksum matches one of said plurality of
previously generated checksums.

62. The computer system according to claim 61, wherein
said file identification application further provides the func-
tion of obtaining a source of known errant files to generate
said plurality of previously generated checksums therefrom.

63. The computer system according to claim 61, wherein
said file identification application further provides the func-
tion of presenting said file marked for deletion for human
review prior to deleting said file.

64. The computer system according to claim 61, wherein
said file identification application further provides the func-
tion of automatically notifying a third party that said file has
been marked for deletion.

65. A computer system, comprising:

a server having a memory connected thereto, said server
being adapted to be connected to a network to permit
remote storage and retrieval of data files from said
memory; and

a file identification application operative with said server
to identify errant files stored in said memory, said file
identification application providing the functions of:
selecting a file stored in said memory;

10

15

20

20

generating a unique checksum corresponding to said
stored file, wherein said generating function further
comprises dividing a graphical image file into blocks
and comparing relationships between said blocks;

comparing said unique checksum to each of a plurality
of previously generated checksums, said plurality of
previously generated checksums corresponding to
known errant files; and

marking said file for deletion from said memory if said

unique checksum matches one of said plurality of
previously generated checksums.

66. The computer system according to claim 65, wherein
said file identification application further provides the func-
tion of obtaining a source of known errant files to generate
said plurality of previously generated checksums therefrom.

67. The computer system according to claim 65, wherein
said file identification application further provides the func-
tion of presenting said file marked for deletion for human
review prior to deleting said file.

68. The computer system according to claim 65, wherein
said file identification application further provides the func-
tion of automatically notifying a third party that said file has
been marked for deletion.

