United States Patent

US007051362B2

(12) (10) Patent No.: US 7,051,362 B2
Shuster 45) Date of Patent: May 23, 2006
(54) METHOD AND SYSTEM FOR OPERATING A 6,209,096 B1* 3/2001 Taruguchic.cocovereneeee 713/193
NETWORK SERVER TO DISCOURAGE 6,493,744 Bl * 12/2002 Emens et al. 709/203
INAPPROPRIATE USE 6,591,367 B1* 7/2003 Kobata et al. 713/201
6,704,872 B1* 3/2004 Okadacccccoeeeeeeeenn. 713/194
(75) Inventor: g{;}asl‘)y Stephen Shuster, Fresno, CA FOREIGN PATENT DOCUMENTS
WO WO 9825373 A2 * 6/1998
(73) Assignee: Ideaflood, Inc., Zephyr Cove, NV (US) * cited by examiner
(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35 Primary Examiner—Gilberto Barron, Ir.
U.S.C. 154(b) by 561 days. Assistant Examiner—Samson Lemma
(74) Attorney, Agent, or Firm—Connolly, Bove, Lodge &
(21) Appl. No.: 09/859,948 Hutz LLP
(22) Filed: May 16, 2001 (57) ABSTRACT
(65) Prior Publication Data .
A method and system for operating a network server to
US 2002/0083070 Al Jun. 27, 2002 discourage inappropriate use are disclosed. The method
Related U.S. Application Data pr0V1d.es for altering files on the server in such a way so as
N o essentially not affect acceptable, desired file types in any
(60) Provisional application No. 60/204,994, filed on May noticeable way, and to substantially corrupt undesirable file
16, 2000. types. The method may be applied to every file copied to or
(51) Int.Cl from a memory of the server. In the alternative, the method
G0;$F }7/30 (2006.01) may be applied only to selected files or types of files on the
GO6F 7/04 (2006.01) server. In particular, the files corrupted by altering according
GO6K 9/00 (2006.01) to the invention are executable software files and com-
HO4L 9/32 (2006.01) pressed files, that are generally not fault-tolerant. Fault
(52) US.CL ..o, 726/2; 726/26; 726/3; 726/12; tolerant files, such as uncompressed text and graphics files
709/219; 709/229 in common Internet-compatible formats, are not noticeably
(58) Field of Classification Search 713/193, affected. The network server will therefore no longer be
713/160, 161, 166, 165, 200, 201; 726/2, useful for storing or transferring undesirable files, and such
o 726/26; 709/ 219,229 use will be discouraged. According to a related embodiment
See application file for complete search history. of the invention, a system comprises a server having an
(56) References Cited application tha.t performs. one gf the embodiments of the
method according to the invention.
U.S. PATENT DOCUMENTS
6,198,850 B1* 3/2001 Banton 382/239 20 Claims, 2 Drawing Sheets
10 16
13

15

U.S. Patent May 23, 2006 Sheet 1 of 2 US 7,051,362 B2

13

15

Fig. 1 7

U.S. Patent May 23, 2006 Sheet 2 of 2 US 7,051,362 B2

Fig. 2 20 30
/ / Fig. 3

SELECT FILE IN
MEMORY

OPEN AND READ
DIRECTORY

32

CHARACTERIZE

SET Al,
BABOF
MINSIZE

OPEN FILE

37

SELECT
ALTERATION
ALGORITHM

SELECT NEXT
FILE

ALTER FILE IN
MEMORY

OPENED
N 7

FINISH

42

CLOSE FILE

INCREMENT i FINISH

FLIP BIT OF
[(AI"t)+BABOF]TI
BYTE

US 7,051,362 B2

1

METHOD AND SYSTEM FOR OPERATING A
NETWORK SERVER TO DISCOURAGE
INAPPROPRIATE USE

CROSS-REFERENCE TO RELATED
APPLICATION

This application claims priority pursuant to 35 U.S.C. §
119(e) to U.S. Provisional Application No. 60/204,994, filed
May 16, 2000, which application is specifically incorporated
herein, in its entirety, by reference.

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates to methods and systems for
operating a server connected to a wide area network, such as
the Internet, and particularly to a method and system for
receiving, serving, and storing files in response to requests
from users, whereby inappropriate use of the server, such as
illegal copying and distribution of copyrighted content, may
be selectively discouraged.

2. Description of Related Art

Publicly accessible servers, in particular servers that pro-
vide storage space for no charge, such as servers on free web
hosts, are often used inappropriately in violation of agreed
terms of service and copyright laws for the distribution of
copyrighted files such as software, music, image and video
files. Such file types often consist of or contain illegally
copied content. The illegally copied content may lend an
undesirable taint to operators of web hosting services who
do not wish to be perceived as encouraging, condoning, or
participating in copyright violations. Additionally, the stor-
age and exchange of these illegal or otherwise inappropriate
files consumes bandwidth and other resources needed for
more appropriate uses, thereby choking and discouraging
the uses that the web server is intended to serve. Another
injury that may be caused by inappropriate or illegal copying
is disproportionately heavy use of the server by relatively
few users, thereby reducing performance for all users, and
reducing the number of subscribers that the hosting service
attracts. A related problem is the devaluation of advertising
space as a result of people downloading such files, and the
potential for alienating advertisers who have purchased
advertising space on the servers that are being used inap-
propriately.

Therefore, a method and system is needed to discourage
inappropriate use of publicly available, network-connected
server space, without adversely affecting intended uses of
the server space or restricting public access. The method and
system should integrate seamlessly and cost-effectively with
existing network protocols and server software and hard-
ware,

SUMMARY OF THE INVENTION

A method and system for operating a network server are
provided, whereby files on the server are altered in such a
way so as to essentially not affect appropriate, desired file
types in any noticeable way, and to corrupt inappropriate,
undesirable file types. As used herein, to “corrupt” a file
means to alter it so that it becomes substantially unusable for
its intended application. For example, a corrupted execut-
able file cannot be executed without generating a fatal error
or otherwise failing to operate in the intended manner; music
in a corrupted music file cannot be played; and files within
a compressed multi-part file cannot be extracted and/or used.

20

25

30

35

40

45

50

55

60

65

2

The method may be applied to every file copied to or from
a memory of the server. In the alternative, the method may
be applied only to selected files or types of files on the
server. In particular, the files corrupted by altering according
to the invention may be executable software files and
compressed files that are generally not fault-tolerant. Fault
tolerant files, such as uncompressed text and graphics files
in common Internet-compatible formats, are not noticeably
affected. Consequently, the invention is particularly useful
for operating a server wherein the desired or acceptable file
types are fault-tolerant, and the undesired file types are
generally not fault-tolerant. The destructive alteration of
undesirable file types may be made difficult or impossible to
reverse by anyone lacking knowledge of the corruption
scheme. The network server will therefore no longer be
useful for storing or transferring undesirable files, and such
use will be discouraged. System bandwidth is thereby con-
served, and the response of the server to appropriate uses can
be greatly improved. Furthermore, the method can be imple-
mented in a variety of different systems without consuming
significant system resources.

According to an embodiment of the invention, the server
is connected through a network, such as the Internet, to a
plurality of client devices, and is configured to transfer
information between any selected one of the client devices
and a memory for static storage of information. The method
comprises the steps of selecting a file residing in a memory
of the server for alteration by applying predetermined
screening rules, and altering a relatively small discrete
portion of the identified file according to an algorithm
comprising a set of predetermined alteration rules. The
predetermined alteration rules are such that the information
value and functionality of fault-tolerant files is essentially
unchanged, while fault-intolerant files are essentially ren-
dered unusable. The amount of data altered in the file may
be as small as a single bit. The alteration step may be
performed as files are served from the server or as they are
transferred to the server. In the alternative, the alteration step
may be performed while the files are stored in a static server
memory, such as by using a disk crawling method.

Preferably, the alteration rules provide for placing any
altered bits towards the end of the file, where they are least
likely to affect appropriate file types, for example, HTML
and graphics files. The location for placing altered bits may
be selected at random, so that the altered file cannot be
repaired. In the alternative, a complex quasi-random algo-
rithm may be used to select the location of the altered bits,
so that the file can only be repaired by someone who knows
the algorithm. A quasi-random algorithm has the added
benefit of making difficult the detection of the precise
algorithm used via a comparison of various files pre- and
post-alteration. The alteration may be made “invisible”—
i.e., inconsequential—to appropriate file types, by determin-
ing the manner in which the alteration is made based on a
putative file type. For example, a harmless comment, such as
“<!>” may be inserted into a file with a “.htm” extension
(signifying an HTML formatted file). Insertion of inconse-
quential information based on putative file type is particu-
larly effective in discouraging deceptive naming practices,
whereby undesired file types are disguised by assigning a
name signifying a desired type of file to an undesired file.
Traceable information may be inserted into the files during
alteration, to facilitate tracking future copying of the file.
Similarly, files may be “flagged” so that they are not
inadvertently altered more than once. In an embodiment of
the invention, selected types of bytes, such as non-text
characters, are deleted or altered, to discourage disguising

US 7,051,362 B2

3

undesirable file types as acceptable file types, such as “.txt”
or “htm” files. These and other alteration rules may be used
and combined in various ways in an alteration method
according to the invention.

According to a related embodiment of the invention, a
system comprises a server having an application that per-
forms one of the embodiments of the method according to
the invention. A more complete understanding of the method
and system for operating a network server to discourage
inappropriate use will be afforded to those skilled in the art,
as well as a realization of additional advantages and objects
thereof, by a consideration of the following detailed descrip-
tion of the preferred embodiment. Reference will be made to
the appended sheets of drawings which will first be
described briefly.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a system diagram showing an exemplary system
for implementing a method according to the invention, and
its relationship to other elements.

FIG. 2 is a flow diagram showing exemplary steps for
performing a method according to the invention in general.

FIG. 3 is a flow diagram showing exemplary steps for
performing an alteration algorithm according to an exem-
plary embodiment of the invention.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENT

The present invention provides a method and system
operable at an application or higher network level for
discouraging inappropriate use of network resources. In the
detailed description that follows, like element numerals are
used to describe like elements shown in one or more of the
figures.

Referring to FIG. 1, system 10 comprises a server 16 and
an application 14 executing on the server. Server 16 is
typically a general purpose computer configured for serving
information to multiple users across a network, but may
comprise any high-level computing device capable of per-
forming the method described herein. Application 14 com-
prises a program of instructions for performing the method
described herein, and may additionally comprise instruc-
tions for performing other server functions as known in the
art.

Server 16 is connected to network 13 by communication
link 15 and to a memory 18 containing at least one file 17.
Memory 18 is any device, such as a hard drive or array of
hard drives, tape drive, optical disk drive, or similar device,
for static storage of information; and particularly, devices
capable of accessing and storing massive amounts of high-
level data for indefinite periods. In an embodiment of the
invention, memory 18 is physically adjacent to server 16 and
connected to the server through a server-operated bus 19.
Server 10 controls access by users, such as user 11 con-
nected to network 13, to memory 18. File 17 is a set of
high-level data encoded in a finite number of discrete
information bits, such as binary bits. A plurality of files such
as file 17 are used to exchange high-level information
between a plurality of users, such as user 11, connected to
network 13 using client devices such as terminal 12 and a
communication link 15. Network 13 may be a wide area
network, such as the Internet, a local area network, or a
combination of different types of networks. The network
may be operated by various protocols, such as TCP/IP. The

20

25

30

35

40

45

50

55

60

65

4

system and method according to the invention are not
limited to application with any particular type of network,
protocol, or client device.

Referring to FIG. 2, exemplary general steps of a method
20 for discouraging inappropriate use of memory connected
to a network are shown. An initial step of method 20 is the
selection at step 21 of a file in the server memory for
alteration. In an embodiment of the invention, alteration is
applied to all public files stored, or to be stored, in the
server’s static memory storage. Generally, the method may
be effectively applied to all files received from public
sources for storage on the server. That is, files may be
selected without determining whether the file is an inappro-
priate type of file or an appropriate type of file. Of course,
files received from trusted sources, such as files created by
a network administrator, are preferably not subjected to
alteration.

In the alternative to applying the method to all files in the
server’s public storage areas, the method may be applied to
files of a selected type, such as “.mp3” files. However, file
types may generally be disguised, so the latter embodiment
may suffer from the disadvantage of being easily circum-
vented. Furthermore, if the file type can indeed be reliably
and quickly determined, it may be simpler and more effec-
tive to simply delete or refuse to transfer the offending file.
However, method 20 provides advantages relative to a
method based on a “detect and destroy” strategy, when it is
not feasible to automatically determine with certainty that an
unknown file is actually inappropriate. The advantages of
method 20 may accrue whether or not it is feasible to
automatically identify files that are suspected of being
inappropriate. When suspected files may be identified, the
public files may be screened or filtered in various ways to
identify them as candidates for alteration according to
method 20. For example, only files greater than a predeter-
mined size, such as ten kilobytes or one-hundred kilobytes,
may be subject to alteration. For further example, a portion
or all of each file may be analyzed to identify patterns typical
of particular file types, and only files displaying patterns
typical of inappropriate file types may be selected for
alteration. In the alternative, files that display patterns typi-
cal of appropriate file types may be spared alteration. Of
course, files that are self-identified as being of an offending
type, for example “.mp3” files, may simply be deleted.

It may be further advantageous to avoid altering any
particular file more than once. In some embodiments, the
alteration algorithm will reverse a particular bit or bits of the
file. Employing the same algorithm again may restore the
file to its original state, which is generally not desirable
(although reversibility may be advantageous when restora-
tion of an altered file is specifically sought). In other
embodiments, the original file may not be restored when the
alteration algorithm is employed a second time; however,
repeated alteration may cause appropriate file types to
become corrupted or noticeably degraded. Repeated alter-
ation of the same file may be avoided by marking the file
with a flag indicating that the file has been altered. Files
marked with the flag are then excluded from further alter-
ation. The flag may reside in the file itself. For example, an
unusual bit pattern may be placed at a specified location in
the file. In the alternative, the flag may be associated with the
file elsewhere in the storage system. For example, the file
attributes may be changed, or the file may be moved to a
“read-only” directory containing only public files.

Whether or not applied to all public files in the server’s
static storage, or to a subset of public files, method 20 may
then be triggered by various events. For example, the receipt

US 7,051,362 B2

5

of a public request for a file transfer may trigger perfor-
mance of method 20 upon the requested file. If more than
one file is requested, each file requested for transfer may be
selected in turn. As used herein, “transfer” includes both the
transmission of a file from a public memory to a client
device, and storage in the public memory of a file received
from a client device. Method 20 may be triggered by both
types of transfers, but may operate more efficiently if
operated upon files when received, before the files are placed
in static storage. According to this embodiment, the files will
be stored in an altered state. If efficiency is not a primary
concern, it may, in the alternative, be advantageous to alter
files only as they are served in response to a request. Altering
files upon request may require repeated processing of the
same file (that is, of files that are requested repeatedly), but
can provide the advantage of preserving an unaltered copy
of every file in the server’s storage. In the alternative, both
an unaltered copy and an altered copy of every file may be
stored, with only the altered copy available for public use. In
another alternative embodiment, any unaltered files in the
server’s public storage area are periodically identified and
altered, with or without preserving an unaltered copy. For
example, at periodic intervals, a “disk-crawling” program
may be executed on the server, where the disk-crawling
program will alter all (or a selected portion of) files stored
in the server’s static memory at any particular time.

At optional step 22, the selected file may be characterized,
that is, tentatively identified as being of a particular file type.
Characterization may be performed as part of a selection
step, or may be performed after a file is selected. In either
case, the process of characterization will be the same or
similar. Selected attributes and/or contents of the file are
read and characteristic data patterns are recognized. The data
patterns and file attributes are compared against a database
of attributes and patterns as related to file types, from which
a suspected file type is identified. Step 22 provides the
advantage of facilitating selection of more targeted alter-
ation algorithms having a higher probability of corrupting
inappropriate file types while not adversely affecting appro-
priate file types. However, performance of step 22 may
consume substantial resources and may require a higher
initial investment in programming. Accordingly, for simpler,
low-cost implementation, step 22 may be omitted.

One likely use for file characterization is detection of
compressed files. Many inappropriate files comprise a plu-
rality of files compressed into a single file. The character-
ization step may detect such compressed files, and also may
identify the location of the individual files within the com-
pressed file. Each individual file in the compressed file may
then be targeted for alteration. Of course, if it may be
determined with certainty that a compressed file is of an
inappropriate type, the compressed file may simply be
deleted. However, on some server systems compressed files
may comprise both appropriate and inappropriate file types.

At step 23, an alteration algorithm is selected. A single
alteration algorithm may be applied to every file selected for
alteration. In the alternative, an algorithm may be selected
from a library of alternative algorithms, depending on fac-
tors such as the suspected file type. Effective operation of
method 20 essentially depends on selection of an appropriate
alteration algorithm. At the same time, various alternative
rules may be equally or comparably effective in selectively
corrupting only inappropriate file types. Therefore, the rules
described herein are merely exemplary in nature, and are not
intended to limit the scope of the invention.

Alteration algorithms in general comprise a set of rules
and/or a sequence of steps for selecting one or more binary

20

25

30

35

40

45

50

55

60

65

6

bits of a file. Binary bits, of course, have only two possible
states, so once the appropriate bits have been selected,
alteration at step 24 is performed by merely reversing their
state, that is, by changing a zero (0) bit to one (1), and
vice-versa. Bit reversal may be accomplished, for example,
by performing an exclusive OR operation on a selected byte
of'the file and an alteration byte. For more specific example,
in an eight-bit byte environment, an exclusive OR with the
byte “00000001” will reverse the lowest-value bit of any
comparison byte. Optionally, the altered file may be stored
in the servers static storage, with or without retaining a copy
of the unaltered file. After the desired bits have been altered,
method 20 may be repeated for the next file, as indicated at
step 25.

In an Internet (TCP/IP) environment, it is preferable to
select the bits to be altered occurring a specified number of
bytes, for example, ten kilobytes, after the first byte of the
file. Many file formats are less fault-tolerant near the begin-
ning of the file. In addition, it may be desirable to ensure that
the checksum for the early part of the file is not changed.
Files smaller than the specified number, e.g., less than ten
kilobytes, may be excluded from being altered. In a related
embodiment, the alteration bit or bits are selected in prox-
imity to the end of the file, such as within ten kilobytes of
the end of the file.

To prevent circumvention and/or reversibility of the alter-
ation, the alteration algorithm may provide for selecting an
alteration bit or bits at random from the file to be altered. For
example, a random number generator may be used to select
a byte between ten and a thousand kilobytes. The random
selection may then be repeated to alter as many bits as
desired. Technically, most software-driven random number
generators do not actually produce random numbers,
because the pattern of numbers produced will typically
depend on a beginning seed number of some kind. However,
any given number produced by such generators using a
secret, independently derived seed can be kept secret, i.e.,
cannot be determined in a second operation by an indepen-
dent party. For the purposes of the present invention, main-
taining secrecy of the seed number will ordinarily be suffi-
cient to ensure an unpredictable, seemingly random result
when operating on the same file. This randomness and
unpredictability should be sufficient to prevent circumven-
tion of the alteration, and actual randomness should not be
required. Should a truly random number be desired, how-
ever, hardware devices for generating such numbers are
available. It should be noted in addition, that as a practical
matter, the number produced by a typical software-driven
random number generator may not be predicted or deter-
mined even by a system operator in possession of the seed
number. Therefore, an alteration based on such a generator
may be practically irreversible even by the system operator.

To make circumvention more difficult without destroying
reversibility, a quasi-random generator may be used for bit
selection. A quasi-random generator appears to generate a
random number, but actually, it does not. Instead, it operates
in a reversible way on selected information in or associated
with the file to produce a variable number. The same variable
number will be produced if the quasi-random operation is
performed again with the same input values. It may therefore
be desirable for the input variables to include a variable
number that is only available to the system operator, as well
as a variable number derived from information in the file that
is altered. For example, the quasi-random generator may
count the number of 1’s (i.e., bits having a value of 1)
occurring in the first ten kilobytes of the file, add a secret
number from a look-up table of random numbers based on

US 7,051,362 B2

7

the day and time of alteration, raise the sum of the counted
and secret numbers to the 5/3 power, and multiply by pi. The
number generated is, of course, not random. However, it
would be difficult for a party ignorant of the formula to
determine how the number had been generated and thereby
generally circumvent the alteration scheme, without pos-
sessing the formula employed. The secret independent input
variable, if used, additionally makes circumvention difficult
in the case of a particular file, because the bits that may be
altered during future processing of a file cannot be deter-
mined by comparing a previously altered file to an unaltered
file. That is, different bits will be altered each time the file
is processed using the method. Meanwhile, the quasi-ran-
dom number may be easily determined by one in possession
of'the secret formula and look-up table. Actual formulas may
be considerably more complex than the simple example
provided, without departing from the scope of the invention.

In an embodiment of the invention, the alteration algo-
rithm determines the method of making an alteration based
on a putative file type determined, for example, by the file
name extension, file header, or other information associated
with a file that purports to identify the file type. The selected
alteration is invisible, that is, inconsequential, to the file of
the purported type. One way to accomplish an inconsequen-
tial alteration is to insert surplus or altered information in a
format that will be essentially ignored when present in files
of the purported type. For example, a comment “<!>” may
be inserted within a purported HTML file, such as a file
named with an “htm” extension. In the alternative, any
character contained within an existing comment field of a
file type supporting delimited comment fields, such as an
HTML file, may be changed, for example, a space may be
changed to a dash within a comment. Such changes will
have no effect whatever on the display or other use of the
file, and only an inconsequential impact on the raw infor-
mation content of the file. However, if a purported file with
delimited comments is actually some other type of file, for
example, an executable binary-coded file, the change will
likely effectively corrupt the file.

In a related embodiment using alteration based on puta-
tive file type, the alteration algorithm identifies a byte of the
file for which a byte synonym exists in the codes of the
appropriate file types. A byte synonym is a byte having a
different value that is interpreted in the same way, or in a
substantially very similar way, as the original byte, when in
a file of an appropriate type. For example, a common
graphics file format may display the hexadecimal string
“AE” in a similar manner to the string “AF,” such as
displaying a pixel having a color of a slightly different
shade. The alteration step 24 then comprises substituting at
least one of the identified bytes with a byte synonym, for
example, exchanging “AE” for “AF.” This is unlikely to
noticeably affect the files of the desired type, but will
effectively corrupt other file types such as binary coded files.

A related approach that may be embodied in an alteration
algorithm is to identify bytes that are not likely to be present
in files of desired, appropriate types, and altering or deleting
those bytes. For example, many common, appropriate file
types primarily comprise coded text, for example ASCII-
coded text characters. Selected or all non-text characters in
the file may be deleted or altered, such as, for example, by
changing non-text characters to the ASCII space (blank)
character. Text files are thus likely to be essentially unaf-
fected by the alteration, while other file types may be
corrupted. Similar algorithms may be employed with other
(non-ASCII or non-text) coding schemes. It may be particu-
larly preferable to select a byte-type specific algorithm based

20

25

30

35

40

45

50

55

60

65

8

on the indicated file type. For example, if the file is named
with a “txt” extension, then selection of a text-specific
algorithm may be preferred. If the file is named with some
other extension, for example, a “gif’ extension, then a
different algorithm may be employed.

According to another embodiment of the invention, the
alteration algorithm comprises a step of inserting traceable
identifying information into a file of an inappropriate type.
The identifying information may comprise any bit pattern
that is not present in the unaltered file and that is sufficiently
distinctive to uniquely identify the file. At the same time, the
bit pattern should not cause corruption of appropriate file
types. Preferably, the identifying information will not be
readily recognized as such by those not in possession of the
identifying algorithm. For example, a particular pattern of
bits may be distributed at specified, secret and/or random
locations in the file. The location of the identifying bits may
be recorded in a separate database, or otherwise determin-
able with the use of a secret formula or secret data, for use
in subsequent law enforcement efforts.

Elements of the foregoing alteration algorithms may be
combined in various ways without departing from the scope
of the invention. For example, it may be preferable to
combine algorithms which select bytes towards the end of a
file with random or quasi-random bit selection and substi-
tution of selected non-text characters. One skilled in the art
may devise various other suitable combinations.

Referring to FIG. 3, exemplary steps comprising an
alteration algorithm 30 of a method according to an embodi-
ment of the invention are diagrammed. Algorithm 30 is
especially suitable for implementation as a periodically
executed disk-crawling application of general applicability
to various file types. It is designed to corrupt binary-coded
files and compressed files, while creating only relatively
minor alterations in text files and most graphics files. At a
designated time, the directory containing the public files to
be altered is opened and the directory contents are read at
step 31. Preferably, the directory containing the files to be
processed is designated as a temporary holding area and
only contains files that have not yet been processed.

At step 32, the alteration variables are initialized. In the
exemplary algorithm 30, the variables comprise an alteration
interval (“AI”), expressed as an integer number of bytes,
such as 750 kilobytes; a number of bytes after the beginning
of the file (“BABOEF”), such as ten kilobytes, before which
no alteration is to occur; and a designated minimum file size
(“MINSIZE”), such as ten kilobytes. In algorithm 30, these
variables are held constant during the disk-crawling proce-
dure, however, they may vary depending on parameters such
as file size, if desired.

At step 33, a file in the directory is opened. At step 34, the
number of bytes in the file are counted and compared to the
MINSIZE variable. If the number of bytes in the file is equal
or less than MINSIZE, the file is not altered, and the file is
then closed and saved at step 35, preferably in a different
directory. The termination condition is then checked at step
36, and if files remain to be processed, the next file is
selected at step 37, repeating the cycle beginning at step 33.

If the number of bytes in the file is greater than MINSIZE,
a counter variable (“i”) is reset to zero at step 38. Then, a
product of Al and I, plus BABOF, is computed at step 39.
This computed number is the location of the byte to be
altered in the current execution cycle, and is compared to the
file length at step 39. To prevent termination of the alteration
loop in the first cycle (i.e., when i=0 and the byte location
therefore equals BABOF), the MINSIZE variable is prefer-
ably greater than or equal to the BABOF variable. Thus, if

US 7,051,362 B2

9

in the initial cycle the file length is greater than or equal to
BABOF (and in subsequent cycles, if the file length is
greater than or equal to BABOF plus each subsequent
interval Al cumulative with prior Al intervals), then a
selected bit of the selected byte is flipped at step 40. For
example, the lowest-value bit of the byte may be flipped. At
step 41, the counter variable i is incremented, such as by 1.
The cycle of steps 39-41 are repeated until the end of the file
is indicated at step 39. The altered file is then closed and
saved, preferably in a different file directory. The termina-
tion condition is then checked at step 36, the next file
selected at step 37, and the cycle repeated beginning at step
33.

The cycle of steps 33-42 are repeated until all files in the
directory have been processed. After all files have been
processed, the termination condition is satisfied and the
process terminates at step 36. One skilled in the art may
program an application for performing the steps of algorithm
30 in various ways.

Having thus described a preferred embodiment of a
method and system for operating a network server to dis-
courage inappropriate use, it should be apparent to those
skilled in the art that certain advantages of the within system
have been achieved. It should also be appreciated that
various modifications, adaptations, and alternative embodi-
ments thereof may be made within the scope and spirit of the
present invention. For example, exemplary alteration algo-
rithms have been described, but it should be apparent that
the inventive concepts described above would be equally
applicable to other alteration algorithms. The invention is
further defined by the following claims.

What is claimed is:

1. A method for operating a network server to discourage
inappropriate use of server memory, wherein the server is
connected to a plurality of public clients and is operable to
transfer public files between a memory of the server and
selected ones of the plurality of clients, wherein the public
files comprise files of a fault-tolerant type for which storage
in the memory is to be encouraged, and files of a fault-
intolerant type for which storage in the memory is to be
discouraged, the method comprising the steps of:

selecting a file from the public files;

selecting a first portion of the file, the first portion

comprising at least one bit of information in the file and
being smaller than the file;

rendering the file unusable for its intended purpose by

altering said first portion to create an altered file and
leaving a second portion of the file unaltered if the file
is a fault-intolerant type; and

preserving the usability of the file for its intended purpose

even while remaining altered if the file is a fault-
tolerant type.

2. The method of claim 1, further comprising storing the
altered file in the memory.

3. The method of claim 1, further comprising storing both
the file and the altered file in the memory.

4. The method of claim 1, further comprising serving the
altered file in response to a request from one of the plurality
of clients without providing sufficient information for
reversing alterations made by the altering step.

5. The method of claim 1, further comprising marking the
altered file with a flag indicating that the file has been
altered.

6. The method of claim 1, further comprising inserting
identifying information into the altered file.

20

25

30

35

40

45

55

60

65

10

7. The method of claim 1, wherein said first selecting step
further comprises selecting the file without determining
whether the file is a fault-tolerant type of file or a fault-
intolerant type of file.

8. The method of claim 1, wherein said first selecting step
further comprises selecting the file from files having more
than a specified number of bytes.

9. The method of claim 1, wherein said first selecting step
further comprises selecting the file after reading at least a
portion of the file and thereby determining that the file is
likely to be of the fault-intolerant type.

10. The method of claim 1, wherein said first selecting
step further comprises selecting the file after determining
that the file is free of any flag indicating that the file has been
altered.

11. The method of claim 1, wherein said first selecting
step further comprises selecting the file comprised of a
plurality of compressed files, and wherein said second
selecting step further comprises selecting the first portion
comprising at least one bit from each of the plurality of
compressed files.

12. The method of claim 1, wherein said second selecting
step further comprises selecting the first portion beginning a
specified number of bytes after a first byte of the file.

13. The method of claim 1, wherein said second selecting
step further comprises selecting the first portion beginning at
least ten kilobytes after a first byte of the file.

14. The method of claim 1, wherein said second selecting
step further comprises selecting the first portion at random
from the file.

15. The method of claim 1, wherein said second selecting
step further comprises selecting the first portion within a
byte for which there is at least one byte synonym in the
codes of the appropriate type of file, and wherein said
altering step further comprises altering the at least one bit of
information so that the byte is transformed into the at least
one byte synonym.

16. The method of claim 1, wherein said second selecting
step further comprises selecting the first portion within at
least one non-text byte of the file.

17. A system to discourage inappropriate use of memory
controlled by a server, wherein the server is operable to store
public files in the memory, wherein the public files comprise
files of a fault-tolerant type for which storage in the memory
is to be encouraged, and files of a fault-intolerant type for
which storage in the memory is to be discouraged, the
system comprising:

a network server connected to a network;

a memory controlled by said network server; and

an application in the memory, the application operable to

execute on the network server to provide the functions

of:

selecting a file from the public files;

selecting a first portion of the file, the first portion
comprising at least one bit of information in the file
and being smaller than the file;

rendering the file unusable for its intended purpose by
altering said first portion to create an altered file and
leaving a second portion of the file unaltered if the
file is a fault-intolerant type; and

preserving the usability of the file for its intended
purpose even while remaining altered if the file is a
fault-tolerant type.

18. The system of claim 17, wherein the application is
further configured to perform the function of marking the

US 7,051,362 B2

11 12
altered file with a flag indicating that the file has been 20. The system of claim 17, wherein the second selecting
altered. function of said application further comprises selecting the

first portion beginning a specified number of bytes after a

19. The system of claim 17, wherein the application is
first byte of the file.

further configured to perform the function of inserting
identifying information into the altered file. I T S

