
(12) United States Patent

US007051362B2

(10) Patent N0.: US 7,051,362 B2
Shuster (45) Date of Patent: May 23, 2006

(54) METHOD AND SYSTEM FOR OPERATING A 6,209,096 B1 * 3/2001 Taruguchi 713/193
NETWORK SERVER TO DISCOURAGE 6,493,744 B1 * 12/2002 Emens et a1. 709/203
INAPPROPRIATE USE 6,591,367 B1 * 7/2003 Kobata et a1. 713/201

6,704,872 B1* 3/2004 Okada 713/194

(75)

(73)

(21)

(22)

(65)

(60)

(51)

(52)

(58)

(56)

6,198,850 B1*

Inventor: Gary Stephen Shuster, Fresno, CA
(Us)

Assignee: Idea?ood, Inc., Zephyr Cove, NV (US)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 561 days.

Appl. No.: 09/859,948

Filed: May 16, 2001

Prior Publication Data

US 2002/0083070 A1 Jun. 27, 2002

Related US. Application Data

Provisional application No. 60/204,994, ?led on May
16, 2000.

Int. Cl.
G06F 17/30 (2006.01)
G06F 7/04 (2006.01)
G06K 9/00 (2006.01)
H04L 9/32 (2006.01)
US. Cl. 726/2; 726/26; 726/3; 726/12;

709/219; 709/229
Field of Classi?cation Search 713/ 193,

713/160, 161, 166, 165, 200, 201; 726/2,
726/26; 709/219, 229

See application ?le for complete search history.

References Cited

U.S. PATENT DOCUMENTS

3/2001 Banton 382/239

13

FOREIGN PATENT DOCUMENTS

W0 W0 9825373 A2 * 6/1998

* cited by examiner

Primary Examiner4Gilberto Barron, Jr.
Assistant ExamineriSamson Lemma
(74) Attorney, Agent, or Firm4Connolly, Bove, Lodge &
HutZ LLP

(57) ABSTRACT

A method and system for operating a network server to
discourage inappropriate use are disclosed. The method
provides for altering ?les on the server in such a way so as

essentially not affect acceptable, desired ?le types in any
noticeable way, and to substantially corrupt undesirable ?le
types. The method may be applied to every ?le copied to or
from a memory of the server. In the alternative, the method
may be applied only to selected ?les or types of ?les on the
server. In particular, the ?les corrupted by altering according
to the invention are executable software ?les and com

pressed ?les, that are generally not fault-tolerant. Fault
tolerant ?les, such as uncompressed text and graphics ?les
in common Intemet-compatible formats, are not noticeably
a?fected. The network server will therefore no longer be
useful for storing or transferring undesirable ?les, and such
use will be discouraged. According to a related embodiment
of the invention, a system comprises a server having an
application that performs one of the embodiments of the
method according to the invention.

20 Claims, 2 Drawing Sheets

U.S. Patent May 23, 2006 Sheet 1 of2 US 7,051,362 B2

13

15

Fig. 1 17

U.S. Patent May 23, 2006 Sheet 2 0f 2 US 7,051,362 B2

Fig.2 20 30

‘v / / Fig.3
21

SELECT FILE IN
MEMORY OPEN AND READ

DIRECTORY

22

CHARACTERIZE
FILE

23
SELECT

ALTERATION
ALGORITHM SELECT NEXT

ALTER FELE IN

LENGTH

FLIP BIT OF
[(Al*i)+BABOF]T :

BYTE
INCREMENT i

US 7,051,362 B2
1

METHOD AND SYSTEM FOR OPERATING A
NETWORK SERVER TO DISCOURAGE

INAPPROPRIATE USE

CROSS-REFERENCE TO RELATED
APPLICATION

This application claims priority pursuant to 35 U.S.C. §
119(e) to US. Provisional Application No. 60/204,994, ?led
May 16, 2000, Which application is speci?cally incorporated
herein, in its entirety, by reference.

BACKGROUND OF THE INVENTION

1. Field of the Invention
The present invention relates to methods and systems for

operating a server connected to a Wide area netWork, such as
the Internet, and particularly to a method and system for
receiving, serving, and storing ?les in response to requests
from users, Whereby inappropriate use of the server, such as
illegal copying and distribution of copyrighted content, may
be selectively discouraged.

2. Description of Related Art
Publicly accessible servers, in particular servers that pro

vide storage space for no charge, such as servers on free Web
hosts, are often used inappropriately in violation of agreed
terms of service and copyright laWs for the distribution of
copyrighted ?les such as softWare, music, image and video
?les. Such ?le types often consist of or contain illegally
copied content. The illegally copied content may lend an
undesirable taint to operators of Web hosting services Who
do not Wish to be perceived as encouraging, condoning, or
participating in copyright violations. Additionally, the stor
age and exchange of these illegal or otherWise inappropriate
?les consumes bandWidth and other resources needed for
more appropriate uses, thereby choking and discouraging
the uses that the Web server is intended to serve. Another
injury that may be caused by inappropriate or illegal copying
is disproportionately heavy use of the server by relatively
feW users, thereby reducing performance for all users, and
reducing the number of subscribers that the hosting service
attracts. A related problem is the devaluation of advertising
space as a result of people doWnloading such ?les, and the
potential for alienating advertisers Who have purchased
advertising space on the servers that are being used inap
propriately.

Therefore, a method and system is needed to discourage
inappropriate use of publicly available, netWork-connected
server space, Without adversely affecting intended uses of
the server space or restricting public access. The method and
system should integrate seamlessly and cost-effectively With
existing netWork protocols and server softWare and hard
Ware,

SUMMARY OF THE INVENTION

A method and system for operating a netWork server are
provided, Whereby ?les on the server are altered in such a
Way so as to essentially not affect appropriate, desired ?le
types in any noticeable Way, and to corrupt inappropriate,
undesirable ?le types. As used herein, to “corrupt” a ?le
means to alter it so that it becomes substantially unusable for
its intended application. For example, a corrupted execut
able ?le cannot be executed Without generating a fatal error
or otherWise failing to operate in the intended manner; music
in a corrupted music ?le cannot be played; and ?les Within
a compressed multi-part ?le cannot be extracted and/or used.

20

25

30

35

40

45

50

55

60

65

2
The method may be applied to every ?le copied to or from

a memory of the server. In the alternative, the method may
be applied only to selected ?les or types of ?les on the
server. In particular, the ?les corrupted by altering according
to the invention may be executable softWare ?les and
compressed ?les that are generally not fault-tolerant. Fault
tolerant ?les, such as uncompressed text and graphics ?les
in common Intemet-compatible formats, are not noticeably
a?fected. Consequently, the invention is particularly useful
for operating a server Wherein the desired or acceptable ?le
types are fault-tolerant, and the undesired ?le types are
generally not fault-tolerant. The destructive alteration of
undesirable ?le types may be made di?icult or impossible to
reverse by anyone lacking knowledge of the corruption
scheme. The netWork server Will therefore no longer be
useful for storing or transferring undesirable ?les, and such
use Will be discouraged. System bandWidth is thereby con
served, and the response of the server to appropriate uses can
be greatly improved. Furthermore, the method can be imple
mented in a variety of different systems Without consuming
signi?cant system resources.
According to an embodiment of the invention, the server

is connected through a netWork, such as the Internet, to a
plurality of client devices, and is con?gured to transfer
information betWeen any selected one of the client devices
and a memory for static storage of information. The method
comprises the steps of selecting a ?le residing in a memory
of the server for alteration by applying predetermined
screening rules, and altering a relatively small discrete
portion of the identi?ed ?le according to an algorithm
comprising a set of predetermined alteration rules. The
predetermined alteration rules are such that the information
value and functionality of fault-tolerant ?les is essentially
unchanged, While fault-intolerant ?les are essentially ren
dered unusable. The amount of data altered in the ?le may
be as small as a single bit. The alteration step may be
performed as ?les are served from the server or as they are
transferred to the server. In the alternative, the alteration step
may be performed While the ?les are stored in a static server
memory, such as by using a disk craWling method.

Preferably, the alteration rules provide for placing any
altered bits toWards the end of the ?le, Where they are least
likely to affect appropriate ?le types, for example, HTML
and graphics ?les. The location for placing altered bits may
be selected at random, so that the altered ?le cannot be
repaired. In the alternative, a complex quasi-random algo
rithm may be used to select the location of the altered bits,
so that the ?le can only be repaired by someone Who knoWs
the algorithm. A quasi-random algorithm has the added
bene?t of making dif?cult the detection of the precise
algorithm used via a comparison of various ?les pre- and
post-alteration. The alteration may be made “invisible”i
i.e., inconsequentialito appropriate ?le types, by determin
ing the manner in Which the alteration is made based on a
putative ?le type. For example, a harmless comment, such as
“<!>” may be inserted into a ?le With a “.htm” extension
(signifying an HTML formatted ?le). Insertion of inconse
quential information based on putative ?le type is particu
larly effective in discouraging deceptive naming practices,
Whereby undesired ?le types are disguised by assigning a
name signifying a desired type of ?le to an undesired ?le.
Traceable information may be inserted into the ?les during
alteration, to facilitate tracking future copying of the ?le.
Similarly, ?les may be “?agged” so that they are not
inadvertently altered more than once. In an embodiment of
the invention, selected types of bytes, such as non-text
characters, are deleted or altered, to discourage disguising

US 7,051,362 B2
3

undesirable ?le types as acceptable ?le types, such as “.txt”
or “.htm” ?les. These and other alteration rules may be used
and combined in various Ways in an alteration method
according to the invention.

According to a related embodiment of the invention, a
system comprises a server having an application that per
forms one of the embodiments of the method according to
the invention. A more complete understanding of the method
and system for operating a network server to discourage
inappropriate use Will be afforded to those skilled in the art,
as Well as a realiZation of additional advantages and objects
thereof, by a consideration of the folloWing detailed descrip
tion of the preferred embodiment. Reference Will be made to
the appended sheets of draWings Which Will ?rst be
described brie?y.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a system diagram shoWing an exemplary system
for implementing a method according to the invention, and
its relationship to other elements.

FIG. 2 is a How diagram shoWing exemplary steps for
performing a method according to the invention in general.

FIG. 3 is a How diagram shoWing exemplary steps for
performing an alteration algorithm according to an exem
plary embodiment of the invention.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENT

The present invention provides a method and system
operable at an application or higher netWork level for
discouraging inappropriate use of netWork resources. In the
detailed description that folloWs, like element numerals are
used to describe like elements shoWn in one or more of the
?gures.

Referring to FIG. 1, system 10 comprises a server 16 and
an application 14 executing on the server. Server 16 is
typically a general purpose computer con?gured for serving
information to multiple users across a netWork, but may
comprise any high-level computing device capable of per
forming the method described herein. Application 14 com
prises a program of instructions for performing the method
described herein, and may additionally comprise instruc
tions for performing other server functions as knoWn in the
art.

Server 16 is connected to netWork 13 by communication
link 15 and to a memory 18 containing at least one ?le 17.
Memory 18 is any device, such as a hard drive or array of
hard drives, tape drive, optical disk drive, or similar device,
for static storage of information; and particularly, devices
capable of accessing and storing massive amounts of high
level data for inde?nite periods. In an embodiment of the
invention, memory 18 is physically adjacent to server 16 and
connected to the server through a server-operated bus 19.
Server 10 controls access by users, such as user 11 con
nected to netWork 13, to memory 18. File 17 is a set of
high-level data encoded in a ?nite number of discrete
information bits, such as binary bits. A plurality of ?les such
as ?le 17 are used to exchange high-level information
betWeen a plurality of users, such as user 11, connected to
netWork 13 using client devices such as terminal 12 and a
communication link 15. NetWork 13 may be a Wide area
netWork, such as the Internet, a local area netWork, or a
combination of different types of netWorks. The netWork
may be operated by various protocols, such as TCP/IP. The

20

25

30

35

40

45

50

55

60

65

4
system and method according to the invention are not
limited to application With any particular type of netWork,
protocol, or client device.

Referring to FIG. 2, exemplary general steps of a method
20 for discouraging inappropriate use of memory connected
to a netWork are shoWn. An initial step of method 20 is the
selection at step 21 of a ?le in the server memory for
alteration. In an embodiment of the invention, alteration is
applied to all public ?les stored, or to be stored, in the
server’s static memory storage. Generally, the method may
be effectively applied to all ?les received from public
sources for storage on the server. That is, ?les may be
selected Without determining Whether the ?le is an inappro
priate type of ?le or an appropriate type of ?le. Of course,
?les received from trusted sources, such as ?les created by
a netWork administrator, are preferably not subjected to
alteration.

In the alternative to applying the method to all ?les in the
server’s public storage areas, the method may be applied to
?les of a selected type, such as “.mp3” ?les. HoWever, ?le
types may generally be disguised, so the latter embodiment
may suffer from the disadvantage of being easily circum
vented. Furthermore, if the ?le type can indeed be reliably
and quickly determined, it may be simpler and more effec
tive to simply delete or refuse to transfer the offending ?le.
HoWever, method 20 provides advantages relative to a
method based on a “detect and destroy” strategy, When it is
not feasible to automatically determine With certainty that an
unknoWn ?le is actually inappropriate. The advantages of
method 20 may accrue Whether or not it is feasible to
automatically identify ?les that are suspected of being
inappropriate. When suspected ?les may be identi?ed, the
public ?les may be screened or ?ltered in various Ways to
identify them as candidates for alteration according to
method 20. For example, only ?les greater than a predeter
mined siZe, such as ten kilobytes or one-hundred kilobytes,
may be subject to alteration. For further example, a portion
or all of each ?le may be analyZed to identify patterns typical
of particular ?le types, and only ?les displaying patterns
typical of inappropriate ?le types may be selected for
alteration. In the alternative, ?les that display patterns typi
cal of appropriate ?le types may be spared alteration. Of
course, ?les that are self-identi?ed as being of an offending
type, for example “.mp3” ?les, may simply be deleted.

It may be further advantageous to avoid altering any
particular ?le more than once. In some embodiments, the
alteration algorithm Will reverse a particular bit or bits of the
?le. Employing the same algorithm again may restore the
?le to its original state, Which is generally not desirable
(although reversibility may be advantageous When restora
tion of an altered ?le is speci?cally sought). In other
embodiments, the original ?le may not be restored When the
alteration algorithm is employed a second time; hoWever,
repeated alteration may cause appropriate ?le types to
become corrupted or noticeably degraded. Repeated alter
ation of the same ?le may be avoided by marking the ?le
With a ?ag indicating that the ?le has been altered. Files
marked With the ?ag are then excluded from further alter
ation. The ?ag may reside in the ?le itself. For example, an
unusual bit pattern may be placed at a speci?ed location in
the ?le. In the alternative, the ?ag may be associated With the
?le elseWhere in the storage system. For example, the ?le
attributes may be changed, or the ?le may be moved to a
“read-only” directory containing only public ?les.

Whether or not applied to all public ?les in the server’s
static storage, or to a subset of public ?les, method 20 may
then be triggered by various events. For example, the receipt

US 7,051,362 B2
5

of a public request for a ?le transfer may trigger perfor
mance of method 20 upon the requested ?le. If more than
one ?le is requested, each ?le requested for transfer may be
selected in turn. As used herein, “transfer” includes both the
transmission of a ?le from a public memory to a client
device, and storage in the public memory of a ?le received
from a client device. Method 20 may be triggered by both
types of transfers, but may operate more ef?ciently if
operated upon ?les When received, before the ?les are placed
in static storage. According to this embodiment, the ?les Will
be stored in an altered state. If ef?ciency is not a primary
concern, it may, in the alternative, be advantageous to alter
?les only as they are served in response to a request. Altering
?les upon request may require repeated processing of the
same ?le (that is, of ?les that are requested repeatedly), but
can provide the advantage of preserving an unaltered copy
of every ?le in the server’s storage. In the alternative, both
an unaltered copy and an altered copy of every ?le may be
stored, With only the altered copy available for public use. In
another alternative embodiment, any unaltered ?les in the
server’s public storage area are periodically identi?ed and
altered, With or Without preserving an unaltered copy. For
example, at periodic intervals, a “disk-crawling” program
may be executed on the server, Where the disk-craWling
program Will alter all (or a selected portion of) ?les stored
in the server’s static memory at any particular time.

At optional step 22, the selected ?le may be characterized,
that is, tentatively identi?ed as being of a particular ?le type.
Characterization may be performed as part of a selection
step, or may be performed after a ?le is selected. In either
case, the process of characterization Will be the same or
similar. Selected attributes and/or contents of the ?le are
read and characteristic data patterns are recognized. The data
patterns and ?le attributes are compared against a database
of attributes and patterns as related to ?le types, from Which
a suspected ?le type is identi?ed. Step 22 provides the
advantage of facilitating selection of more targeted alter
ation algorithms having a higher probability of corrupting
inappropriate ?le types While not adversely affecting appro
priate ?le types. HoWever, performance of step 22 may
consume substantial resources and may require a higher
initial investment in programming. Accordingly, for simpler,
loW-cost implementation, step 22 may be omitted.
One likely use for ?le characterization is detection of

compressed ?les. Many inappropriate ?les comprise a plu
rality of ?les compressed into a single ?le. The character
ization step may detect such compressed ?les, and also may
identify the location of the individual ?les Within the com
pressed ?le. Each individual ?le in the compressed ?le may
then be targeted for alteration. Of course, if it may be
determined With certainty that a compressed ?le is of an
inappropriate type, the compressed ?le may simply be
deleted. HoWever, on some server systems compressed ?les
may comprise both appropriate and inappropriate ?le types.

At step 23, an alteration algorithm is selected. A single
alteration algorithm may be applied to every ?le selected for
alteration. In the alternative, an algorithm may be selected
from a library of alternative algorithms, depending on fac
tors such as the suspected ?le type. Effective operation of
method 20 essentially depends on selection of an appropriate
alteration algorithm. At the same time, various alternative
rules may be equally or comparably effective in selectively
corrupting only inappropriate ?le types. Therefore, the rules
described herein are merely exemplary in nature, and are not
intended to limit the scope of the invention.

Alteration algorithms in general comprise a set of rules
and/or a sequence of steps for selecting one or more binary

20

25

30

35

40

45

50

55

60

65

6
bits of a ?le. Binary bits, of course, have only tWo possible
states, so once the appropriate bits have been selected,
alteration at step 24 is performed by merely reversing their
state, that is, by changing a zero (0) bit to one (1), and
vice-versa. Bit reversal may be accomplished, for example,
by performing an exclusive OR operation on a selected byte
of the ?le and an alteration byte. For more speci?c example,
in an eight-bit byte environment, an exclusive OR With the
byte “00000001” Will reverse the loWest-value bit of any
comparison byte. Optionally, the altered ?le may be stored
in the servers static storage, With or Without retaining a copy
of the unaltered ?le. After the desired bits have been altered,
method 20 may be repeated for the next ?le, as indicated at
step 25.

In an Internet (TCP/IP) environment, it is preferable to
select the bits to be altered occurring a speci?ed number of
bytes, for example, ten kilobytes, after the ?rst byte of the
?le. Many ?le formats are less fault-tolerant near the begin
ning of the ?le. In addition, it may be desirable to ensure that
the checksum for the early part of the ?le is not changed.
Files smaller than the speci?ed number, e.g., less than ten
kilobytes, may be excluded from being altered. In a related
embodiment, the alteration bit or bits are selected in prox
imity to the end of the ?le, such as Within ten kilobytes of
the end of the ?le.

To prevent circumvention and/ or reversibility of the alter
ation, the alteration algorithm may provide for selecting an
alteration bit or bits at random from the ?le to be altered. For
example, a random number generator may be used to select
a byte betWeen ten and a thousand kilobytes. The random
selection may then be repeated to alter as many bits as
desired. Technically, most software-driven random number
generators do not actually produce random numbers,
because the pattern of numbers produced Will typically
depend on a beginning seed number of some kind. HoWever,
any given number produced by such generators using a
secret, independently derived seed can be kept secret, i.e.,
cannot be determined in a second operation by an indepen
dent party. For the purposes of the present invention, main
taining secrecy of the seed number Will ordinarily be suffi
cient to ensure an unpredictable, seemingly random result
When operating on the same ?le. This randomness and
unpredictability should be suf?cient to prevent circumven
tion of the alteration, and actual randomness should not be
required. Should a truly random number be desired, hoW
ever, hardWare devices for generating such numbers are
available. It should be noted in addition, that as a practical
matter, the number produced by a typical softWare-driven
random number generator may not be predicted or deter
mined even by a system operator in possession of the seed
number. Therefore, an alteration based on such a generator
may be practically irreversible even by the system operator.

To make circumvention more dif?cult Without destroying
reversibility, a quasi-random generator may be used for bit
selection. A quasi-random generator appears to generate a
random number, but actually, it does not. Instead, it operates
in a reversible Way on selected information in or associated
With the ?le to produce a variable number. The same variable
number Will be produced if the quasi-random operation is
performed again With the same input values. It may therefore
be desirable for the input variables to include a variable
number that is only available to the system operator, as Well
as a variable number derived from information in the ?le that
is altered. For example, the quasi-random generator may
count the number of l’s (i.e., bits having a value of l)
occurring in the ?rst ten kilobytes of the ?le, add a secret
number from a look-up table of random numbers based on

US 7,051,362 B2
7

the day and time of alteration, raise the sum of the counted
and secret numbers to the 5/3 power, and multiply by pi. The
number generated is, of course, not random. HoWever, it
Would be difficult for a party ignorant of the formula to
determine hoW the number had been generated and thereby
generally circumvent the alteration scheme, Without pos
sessing the formula employed. The secret independent input
variable, if used, additionally makes circumvention dif?cult
in the case of a particular ?le, because the bits that may be
altered during future processing of a ?le cannot be deter
mined by comparing a previously altered ?le to an unaltered
?le. That is, different bits Will be altered each time the ?le
is processed using the method. MeanWhile, the quasi-ran
dom number may be easily determined by one in possession
of the secret formula and look-up table. Actual formulas may
be considerably more complex than the simple example
provided, Without departing from the scope of the invention.

In an embodiment of the invention, the alteration algo
rithm determines the method of making an alteration based
on a putative ?le type determined, for example, by the ?le
name extension, ?le header, or other information associated
With a ?le that purports to identify the ?le type. The selected
alteration is invisible, that is, inconsequential, to the ?le of
the purported type. One Way to accomplish an inconsequen
tial alteration is to insert surplus or altered information in a
format that Will be essentially ignored When present in ?les
of the purported type. For example, a comment “<!>” may
be inserted Within a purported HTML ?le, such as a ?le
named With an “.htm” extension. In the alternative, any
character contained Within an existing comment ?eld of a
?le type supporting delimited comment ?elds, such as an
HTML ?le, may be changed, for example, a space may be
changed to a dash Within a comment. Such changes Will
have no effect Whatever on the display or other use of the
?le, and only an inconsequential impact on the raW infor
mation content of the ?le. HoWever, if a purported ?le With
delimited comments is actually some other type of ?le, for
example, an executable binary-coded ?le, the change Will
likely e?fectively corrupt the ?le.

In a related embodiment using alteration based on puta
tive ?le type, the alteration algorithm identi?es a byte of the
?le for Which a byte synonym exists in the codes of the
appropriate ?le types. A byte synonym is a byte having a
different value that is interpreted in the same Way, or in a
substantially very similar Way, as the original byte, When in
a ?le of an appropriate type. For example, a common
graphics ?le format may display the hexadecimal string
“AB” in a similar manner to the string “AF,” such as
displaying a pixel having a color of a slightly different
shade. The alteration step 24 then comprises substituting at
least one of the identi?ed bytes With a byte synonym, for
example, exchanging “AE” for “AF.” This is unlikely to
noticeably affect the ?les of the desired type, but will
effectively corrupt other ?le types such as binary coded ?les.
A related approach that may be embodied in an alteration

algorithm is to identify bytes that are not likely to be present
in ?les of desired, appropriate types, and altering or deleting
those bytes. For example, many common, appropriate ?le
types primarily comprise coded text, for example ASCII
coded text characters. Selected or all non-text characters in
the ?le may be deleted or altered, such as, for example, by
changing non-text characters to the ASCII space (blank)
character. Text ?les are thus likely to be essentially unaf
fected by the alteration, While other ?le types may be
corrupted. Similar algorithms may be employed With other
(non-ASCII or non-text) coding schemes. It may be particu
larly preferable to select a byte-type speci?c algorithm based

20

25

30

35

40

45

50

55

60

65

8
on the indicated ?le type. For example, if the ?le is named
With a “txt” extension, then selection of a text-speci?c
algorithm may be preferred. If the ?le is named With some
other extension, for example, a “gif’ extension, then a
different algorithm may be employed.

According to another embodiment of the invention, the
alteration algorithm comprises a step of inserting traceable
identifying information into a ?le of an inappropriate type.
The identifying information may comprise any bit pattern
that is not present in the unaltered ?le and that is suf?ciently
distinctive to uniquely identify the ?le. At the same time, the
bit pattern should not cause corruption of appropriate ?le
types. Preferably, the identifying information Will not be
readily recogniZed as such by those not in possession of the
identifying algorithm. For example, a particular pattern of
bits may be distributed at speci?ed, secret and/or random
locations in the ?le. The location of the identifying bits may
be recorded in a separate database, or otherWise determin
able With the use of a secret formula or secret data, for use
in subsequent laW enforcement efforts.

Elements of the foregoing alteration algorithms may be
combined in various Ways Without departing from the scope
of the invention. For example, it may be preferable to
combine algorithms Which select bytes toWards the end of a
?le With random or quasi-random bit selection and substi
tution of selected non-text characters. One skilled in the art
may devise various other suitable combinations.

Referring to FIG. 3, exemplary steps comprising an
alteration algorithm 30 of a method according to an embodi
ment of the invention are diagrammed. Algorithm 30 is
especially suitable for implementation as a periodically
executed disk-crawling application of general applicability
to various ?le types. It is designed to corrupt binary-coded
?les and compressed ?les, While creating only relatively
minor alterations in text ?les and most graphics ?les. At a
designated time, the directory containing the public ?les to
be altered is opened and the directory contents are read at
step 31. Preferably, the directory containing the ?les to be
processed is designated as a temporary holding area and
only contains ?les that have not yet been processed.
At step 32, the alteration variables are initialiZed. In the

exemplary algorithm 30, the variables comprise an alteration
interval (“AI”), expressed as an integer number of bytes,
such as 750 kilobytes; a number of bytes after the beginning
of the ?le (“BABOF”), such as ten kilobytes, before Which
no alteration is to occur; and a designated minimum ?le siZe
(“MINSIZE”), such as ten kilobytes. In algorithm 30, these
variables are held constant during the disk-craWling proce
dure, hoWever, they may vary depending on parameters such
as ?le siZe, if desired.
At step 33, a ?le in the directory is opened. At step 34, the

number of bytes in the ?le are counted and compared to the
MINSIZE variable. If the number of bytes in the ?le is equal
or less than MINSIZE, the ?le is not altered, and the ?le is
then closed and saved at step 35, preferably in a different
directory. The termination condition is then checked at step
36, and if ?les remain to be processed, the next ?le is
selected at step 37, repeating the cycle beginning at step 33.

If the number of bytes in the ?le is greater than MINSIZE,
a counter variable (“i”) is reset to Zero at step 38. Then, a
product of AI and I, plus BABOF, is computed at step 39.
This computed number is the location of the byte to be
altered in the current execution cycle, and is compared to the
?le length at step 39. To prevent termination of the alteration
loop in the ?rst cycle (i.e., When iIO and the byte location
therefore equals BABOF), the MINSIZE variable is prefer
ably greater than or equal to the BABOF variable. Thus, if

US 7,051,362 B2

in the initial cycle the ?le length is greater than or equal to
BABOF (and in subsequent cycles, if the ?le length is
greater than or equal to BABOF plus each subsequent
interval Al cumulative With prior Al intervals), then a
selected bit of the selected byte is ?ipped at step 40. For
example, the loWest-value bit of the byte may be ?ipped. At
step 41, the counter variable i is incremented, such as by l.
The cycle of steps 3941 are repeated until the end of the ?le
is indicated at step 39. The altered ?le is then closed and
saved, preferably in a different ?le directory. The termina
tion condition is then checked at step 36, the next ?le
selected at step 37, and the cycle repeated beginning at step
33.

The cycle of steps 3342 are repeated until all ?les in the
directory have been processed. After all ?les have been
processed, the termination condition is satis?ed and the
process terminates at step 36. One skilled in the art may
program an application for performing the steps of algorithm
30 in various Ways.

Having thus described a preferred embodiment of a
method and system for operating a netWork server to dis
courage inappropriate use, it should be apparent to those
skilled in the art that certain advantages of the Within system
have been achieved. It should also be appreciated that
various modi?cations, adaptations, and alternative embodi
ments thereof may be made Within the scope and spirit of the
present invention. For example, exemplary alteration algo
rithms have been described, but it should be apparent that
the inventive concepts described above Would be equally
applicable to other alteration algorithms. The invention is
further de?ned by the folloWing claims.

What is claimed is:
1. A method for operating a netWork server to discourage

inappropriate use of server memory, Wherein the server is
connected to a plurality of public clients and is operable to
transfer public ?les betWeen a memory of the server and
selected ones of the plurality of clients, Wherein the public
?les comprise ?les of a fault-tolerant type for Which storage
in the memory is to be encouraged, and ?les of a fault
intolerant type for Which storage in the memory is to be
discouraged, the method comprising the steps of:

selecting a ?le from the public ?les;
selecting a ?rst portion of the ?le, the ?rst portion

comprising at least one bit of information in the ?le and
being smaller than the ?le;

rendering the ?le unusable for its intended purpose by
altering said ?rst portion to create an altered ?le and
leaving a second portion of the ?le unaltered if the ?le
is a fault-intolerant type; and

preserving the usability of the ?le for its intended purpose
even While remaining altered if the ?le is a fault
tolerant type.

2. The method of claim 1, further comprising storing the
altered ?le in the memory.

3. The method of claim 1, further comprising storing both
the ?le and the altered ?le in the memory.

4. The method of claim 1, further comprising serving the
altered ?le in response to a request from one of the plurality
of clients Without providing suf?cient information for
reversing alterations made by the altering step.

5. The method of claim 1, further comprising marking the
altered ?le With a ?ag indicating that the ?le has been
altered.

6. The method of claim 1, further comprising inserting
identifying information into the altered ?le.

20

25

30

35

40

45

55

60

65

10
7. The method of claim 1, Wherein said ?rst selecting step

further comprises selecting the ?le Without determining
Whether the ?le is a fault-tolerant type of ?le or a fault
intolerant type of ?le.

8. The method of claim 1, Wherein said ?rst selecting step
further comprises selecting the ?le from ?les having more
than a speci?ed number of bytes.

9. The method of claim 1, Wherein said ?rst selecting step
further comprises selecting the ?le after reading at least a
portion of the ?le and thereby determining that the ?le is
likely to be of the fault-intolerant type.

10. The method of claim 1, Wherein said ?rst selecting
step further comprises selecting the ?le after determining
that the ?le is free of any ?ag indicating that the ?le has been
altered.

11. The method of claim 1, Wherein said ?rst selecting
step further comprises selecting the ?le comprised of a
plurality of compressed ?les, and Wherein said second
selecting step further comprises selecting the ?rst portion
comprising at least one bit from each of the plurality of
compressed ?les.

12. The method of claim 1, Wherein said second selecting
step further comprises selecting the ?rst portion beginning a
speci?ed number of bytes after a ?rst byte of the ?le.

13. The method of claim 1, Wherein said second selecting
step further comprises selecting the ?rst portion beginning at
least ten kilobytes after a ?rst byte of the ?le.

14. The method of claim 1, Wherein said second selecting
step further comprises selecting the ?rst portion at random
from the ?le.

15. The method of claim 1, Wherein said second selecting
step further comprises selecting the ?rst portion Within a
byte for Which there is at least one byte synonym in the
codes of the appropriate type of ?le, and Wherein said
altering step further comprises altering the at least one bit of
information so that the byte is transformed into the at least
one byte synonym.

16. The method of claim 1, Wherein said second selecting
step further comprises selecting the ?rst portion Within at
least one non-text byte of the ?le.

17. A system to discourage inappropriate use of memory
controlled by a server, Wherein the server is operable to store
public ?les in the memory, Wherein the public ?les comprise
?les of a fault-tolerant type for Which storage in the memory
is to be encouraged, and ?les of a fault-intolerant type for
Which storage in the memory is to be discouraged, the
system comprising:

a netWork server connected to a netWork;

a memory controlled by said netWork server; and
an application in the memory, the application operable to

execute on the netWork server to provide the functions
of:
selecting a ?le from the public ?les;
selecting a ?rst portion of the ?le, the ?rst portion

comprising at least one bit of information in the ?le
and being smaller than the ?le;

rendering the ?le unusable for its intended purpose by
altering said ?rst portion to create an altered ?le and
leaving a second portion of the ?le unaltered if the
?le is a fault-intolerant type; and

preserving the usability of the ?le for its intended
purpose even While remaining altered if the ?le is a
fault-tolerant type.

18. The system of claim 17, Wherein the application is
further con?gured to perform the function of marking the

US 7,051,362 B2
11 12

altered ?le With a ?ag indicating that the ?le has been 20. The system of claim 17, Wherein the second selecting
altered. function of said application further comprises selecting the

?rst portion beginning a speci?ed number of bytes after a 19. The system of claim 17, Wherein the application is
?rst byte of the ?le. further con?gured to perform the function of inserting

identifying information into the altered ?le. * * * * *

