a2 United States Patent

Shuster

US008117258B2

US 8,117,258 B2
Feb. 14, 2012

(10) Patent No.:
(45) Date of Patent:

(54)

(735)

(73)

")

@
(22)

(65)

(63)

(60)

(1)

(52)
(58)

(56)

DISTRIBUTED COMPUTING BY
CARRIER-HOSTED AGENT

Inventor: Gary Stephen Shuster, Fresno, CA
(US)

Assignee: Hoshiko LL.C, Henderson, NV (US)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by O days.

Appl. No.: 12/886,827

Filed: Sep. 21, 2010

Prior Publication Data
US 2011/0047205 A1l Feb. 24, 2011

Related U.S. Application Data

Continuation of application No. 10/151,810, filed on
May 20, 2002, now Pat. No. 7,801,944.

Provisional application No. 60/291,879, filed on May

18, 2001.

Int. CI.

GO6F 15/16 (2006.01)

US.CL e 709/203; 709/219

Field of Classification Search 709/203,
709/219

See application file for complete search history.

5,031,089
5,442,791
5,557,798
5,761,421
5,903,728
5,909,559
5,978,829
5,999,944

References Cited

U.S. PATENT DOCUMENTS

6,279,034 Bl 8/2001 Jarriel et al.
6,308,208 Bl 10/2001 Jung et al.
6,336,139 Bl 1/2002 Feridun et al.
6,732,141 B2* 5/2004 EIliS «oocoovvevvvvinieeennn, 709/201
6,757,730 Bl 6/2004 Lee et al.
6,842,899 B2* 1/2005 Moody et al. 718/100
6,996,548 B2* 2/2006 Ratcliff, IIT 706/14
(Continued)
OTHER PUBLICATIONS

Yair Amir, Baruch Awerbuch, and R. Sean Borgstrom. “A Cost-
Benefit framework for online management of a metacomputing sys-
tem”, Decision Support Systems 28 (2000), 2000, pp. 155-164, 10
pages.*

(Continued)

Primary Examiner — George Neurauter
(74) Attorney, Agent, or Firm — Knobbe Martens Olson &
Bear LLP

(57) ABSTRACT

A method for operating a host layer of a distributed comput-
ing system on a wide area network includes attaching an
autonomous agent to a client-requested carrier, such as web
content. The method includes the steps of receiving a request
for specified content from a client node via the wide area
network, and sending the content and an embedded agent to
the client via the wide area network. The agent has program
instructions configured to execute autonomously on the client
node to perform a processing function. The processing func-
tion is configured to operate on raw data to produce process
data, according to instructions determined by a solution algo-
rithm of the distributed computing system. The method fur-
ther includes sending the raw data to the client node and
receiving the process data from the client node as it is pro-
cessed by the agent. The host layer may comprise a web

A * 7/1991 Livetal .o, 709/226 server hosting a web site containing consumer-oriented web
A % 8/1995 Wrabetzetal. 719/330 pages, and the carrier may comprise an HTML page contain-
A 9/1996 Skeen et al. ing user content. The agent may comprise a web page-en-
A 6/1998 Van Hoff et al. bled licati bedded in the HTMI. h
A 5/1999 Semenzato a eTMapp ication embedded in the page, such as a
A 6/1999 So Java™ applet.
A * 11/1999 Chungetal. 718/102
A 12/1999 Lipkin 18 Claims, 2 Drawing Sheets
300
308 310 312 314
— SN W B W Yoo,
) DEFINE DEFINE i
| | cowrumaTionaL | soumion | FGoUEs [N CARRERS |
S, s ———— "
Mg By [ag0n s 8225 __ [
1 DISTRIBUTE ERROR CHECK/ }
] CARRIERS WITH RECEIVE L]
i EMBEDDED [~ SEND RAWDATA [" PROGESS DATA [| peoamneCl ta i
1
I]
|]
: 324 ™~ REPORT || PROCESS i
i RESULTS RECEIVED DATA 1
: 326 |
RO s s]
328 330 332 334 308
N S) SN I . e
]
: OBTAINSTATE& | | OPERATEON | | SAVESTATER | | SEND PROCESS :
I DA RAW DATA PROCESS DATA DATA 1
I 1
1]

US 8,117,258 B2
Page 2

U.S. PATENT DOCUMENTS

2001/0047384 Al 11/2001 Croy
2002/0007394 Al 1/2002 Bertolus et al.
2002/0016835 Al 2/2002 Gamerman
2002/0019844 Al 2/2002 Kurowski et al.
2002/0091752 Al 7/2002 Firlie
2002/0099818 Al 7/2002 Russell et al.
2002/0198962 Al 12/2002 Horn et al.
2003/0067480 Al 4/2003 Gao et al.
2003/0120727 Al 6/2003 Mentchoukov

OTHER PUBLICATIONS

Finkel, David et al. “An Applet-Based Anonymous Distributed Com-
puting System”, Proceedings of the International Network Confer-
ence 2000, Jul. 2000, 11 pages.*

Yan, Long and Chen, Chungmin. “JAM:High Performance Internet
Computing with Massive Java Applets”, 1999 ICDCS Workshop on
Electronic Commerce and Web-Based Applications, 1999, 6 pages.*
World Wide Web Consortium. “HTML 4.01 Specification”, section
13 “Objects, Images, and Applets”, released Dec. 24, 1999, 25 pages.

Sun Microsystems, Inc. “Applets”, publicly posted Apr. 29, 1999,
retrieved from http://web.archive.org/web/1999042921171 U/http://
java.sun.com/applets/, 2pages.

Hipschman, Ron. “How SETI@homeworks”, publicly posted Mar. 3,
2000, http://web.archive.org/web/20000303 114553/setiathome.
berkeley.edu/about__seti/about__seti__at__home__1.html, 2 pages.
Sullivan, W.T. et al. “A new major SETI project based on Project
Serendip data and 100,000 personal computer”, originally published
in “Astronomical and Biochemical Origins and the Search for Life in
the Universe”, Proc. of the Fifth Intl. Conf. on Bioastronomy=IAU
Colloq. No. 161, 1997, 4 pages.

Finkel, David et al. “An Applet-Based Anonymous Distributed Com-
puting System”, Proceedings of the International Network Confer-
ence 2000, Jul. 2000, 11 pages.

Yan, Long and Chen, Chungmin. “JAM: High Performance Internet
Computing with Massive Java Applets”, 1999 ICDCS Workshop on
Electronic Commerce and Web-Based Applications, 1999, 6 pages.
Howe, Denis. “plug-in”, Free On-Line Dictionary of Computing,
publicly posted May 25, 1996, 1 page.

* cited by examiner

U.S. Patent Feb. 14, 2012 Sheet 1 of 2 US 8,117,258 B2

Fig. 1 12 S

s
1.
=

.
s
N

110a

118

16 _~ mEE \S“vwz

Fig. 2 200
212
PROCESS SYSTEM CONTENT
ORIGINATOR DESIGNER PROVIDER
202 2 204 206
@,%7 X 214
3 216
210 224
2 |STR|BUTED AGENT822R(:V_\}DATA
INTERNET : | WEB

CLIENTS

222 1 HOST
| PROGESSED DATA 208

U.S. Patent Feb. 14, 2012 Sheet 2 of 2 US 8,117,258 B2

! |
! [
[DEFINE DEFINE |
|| COMPUTATIONAL [—| soluTion [PEVELOR AGENT L | B e e | |
! PROBLEM SYSTEM !
|
el
304
Y & [+ 10 3B~] | 320 ____ = 32244 ___ —_———
DISTRIBUTE j
i | CARRIERS WITH SEND RawDATA || RECEWVE | | ERRORCHECK|
! EMBEDDED PROGESS DATA [| necenveD baTA | |
| AGENTS |
1 |
1 |
: 324 :
i ™~ ReporT | _| PROCESS !
[RESULTS RECEIVED DATA ,
: ™ 326 I
i

e —— ————— — ——— . — —— o — ——

OBTAIN STATE &
RAW DATA

OPERATE ON
RAW DATA

SAVE STATE &

[| PROCESS DATA

SEND PROCESS
DATA

US 8,117,258 B2

1

DISTRIBUTED COMPUTING BY
CARRIER-HOSTED AGENT

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application is a continuation of U.S. patent applica-
tion Ser. No. 10/151,810, filed May 20, 2002 which claims
priority pursuant to 35 U.S.C. §119(e) to U.S. Provisional
Application No. 60/291,879, filed May 18, 2001, all of which
are specifically incorporated herein, in their entirety, by ref-
erence.

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates to methods and applications
for implementing remote, distributed computing systems
over a wide area network.

2. Description of the Related Art

Various types of distributed computing systems have been
developed for distributing integrated computing processes
over disparate computing resources connected by a network.
Distributed systems have been adapted for many different
types of networks, including for public, wide area networks
such as the Internet. The Internet in particular represents a
distributed computing resource that is already larger than
seemed conceivable just a decade ago. Yet, the Internet still
has tremendous growth potential in at least three parameters,
each of which can increase the power and speed of distributed
computing: (1) the population of network nodes; (2) the com-
puting power available at each node; and (3) bandwidth. The
multiplicative effect of continued growth in these three
parameters means that the computing resources available for
distributed computing should continue to expand at an aston-
ishingly rapid pace for the foreseeable future.

Nonetheless, prior methods and systems designed to use
Internet resources for distributed computing have been quite
limited in scope. Some systems have been successful, for
example, the system operated by the SETI@home project,
about which more information is available at http://setiath-
ome.ssl.berkeley.edu/. Each of these prior systems requires
that each Internet client in the network download (or other-
wise receive) and install agent software on each participating
client node. Because the active participation of individual
users is required to initiate a client node, prior art systems are
unlikely to ever harness more than a tiny fraction of the
distributed computing resources available on the Internet.
Most users will simply never take the time to install agent
software for which they will receive little or no direct benefit.
This is particularly true when the distributed resources are
desired for private use, instead of for public research or chari-
table uses for which users may perceive a public or charitable
benefit. Some have proposed providing payments or other
incentives for use of a client node, but it is doubtful that
compensation at levels that are economically sustainable will
ever be sufficient to motivate widespread initiation of client
nodes. Furthermore, the operation of a payment or incentive
program may impose a substantial administrative burden on
the system operator.

It is desirable, therefore, to provide a method and system
for distributing computing over the Internet, that overcomes
the limitations of prior art methods and systems for distrib-
uted computing.

SUMMARY OF THE INVENTION

The present invention provides a method and system for
distributed computing using carrier-hosted agents that may be

20

25

30

35

40

45

50

55

60

65

2

implemented over wide area networks, such as the Internet. A
system according to the invention is capable of automatically
promoting client node populations for distributed computing,
without requiring any active participation by operators of the
client nodes. At its most basic conceptual level, a system
according to the invention operates by attaching a distributed
computing agent to information, software, or hardware that
users will desire to access and/or install on an Internet-con-
nected computer. Preferably, the distributed agent is one that
will operate with minimal or no noticeable effect observable
at the client level.

A distributed agent essentially comprises code that is
capable of operating autonomously on a client node to per-
form computing operations determined by a solution algo-
rithm of a distributed computing system, as known in the art.
Core functions of an agent for distributed computing typi-
cally include receiving raw data from a distributed system,
processing the data, and sending the processed data back to an
appropriate node of the distributed system. Other agent func-
tions may include periodically writing data and state infor-
mation to a client-side file, and checking for state information
upon initiation. Of course, agent software may perform func-
tions other than core functions, for example, an agent may
provide an interface for a client-side operator to view state
information and/or set processing parameters.

The desired information, software, or hardware to which
agents are attached, herein called “carriers,” may be virtually
anything that users will desire to use on a client node.
Examples include a chip on a system motherboard or add-on
board, client operating system software, client application
software, email messages, web pages, and so forth. The rela-
tionship is comparable to that between “Trojan-horse” infor-
mation and a computer virus, but is distinct in that, unlike
computer viruses, agents are designed to carry out useful
work in a benign fashion, and, unlike Trojan-horse informa-
tion, agent carriers are designed to be beneficial to the client.
Express or implied consents may be obtained from users at
client nodes as part of the carrier distribution scheme, to
alleviate any concerns about unauthorized use of client
resources. While a system according to the invention may be
employed without any involvement by client operators, it
may also be adapted to allow as much involvement as desired.
For example, operators may be asked to consent to the auto-
matic installation and operation of the software agents when
the operators subscribe to a host site, such as by a “click-
through” license agreement.

Inan embodiment ofthe invention, the agents are hosted by
a carrier comprising a web page, which may be included ina
collection of related web pages comprising a web site. Agents
are embedded in web pages that contain content requested by
visitors to the web site, and are configured to execute auto-
matically when the requested web page is loaded by the user’s
browser application. The agents preferably reside on a hidden
or minimized browser page, or frame of a browser page, on
the client node.

Accordingly, the present invention provides a method and
system of distributed computing, suitable for private use in a
public environment. A more complete understanding of the
use of carrier-hosted agents for distributed computing appli-
cations will be afforded to those skilled in the art, as well as a
realization of additional advantages and objects thereof, by a
consideration of the following detailed description of the
preferred embodiment. Reference will be made to the
appended sheets of drawings which will first be described
briefly.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a web diagram showing elements of a system for
distributed computing using carrier-hosted agents.

US 8,117,258 B2

3

FIG. 2 is a block showing elements of a system for distrib-
uted computing using carrier-hosted agents.

FIG. 3 is a process diagram showing layers of a method for
distributed computing using carrier-hosted agents, and exem-
plary steps that may be performed in the respective layers.

DETAILED DESCRIPTION OF THE PREFERRED
EMBODIMENT

The present invention provides a method and system for
distributing computing using carrier-hosted agents, that over-
comes the limitations of the prior art, thereby enabling more
effective and widespread use of distributed computing
resources than has heretofore been possible.

Elements of a system 100 for distributed computing using
carrier-hosted agents are shown in FIG. 1. System 100 com-
prises a host server 102 performing a host layer process 104
according to software stored on any suitable storage media of
memory 106. Server 102 may comprise any suitable general
purpose computer adapted for use as a network server, and is
connected to a wide area network, such as the Internet, by
communication links 110a-c. In the alternative, host layer
process 104 may be distributed across a plurality of comput-
ers (not shown) connected to network 108.

Any number of other computing devices may be connected
to network 108 and communicate with one another through
numerous communication links, and numerous additional
elements may be incorporated into system 100. Various suit-
able network architectures, communication protocols, and
methods are known in the art, and the present invention may
be adapted for use with virtually any network configuration.

Computers 112, 114 are also connected to network 108 and
possess computing resources potentially available for use as
clientnodes of a distributed computing system. In an embodi-
ment of the invention, each computer operates a browser
application such as known in the art for communicating with
other computers connected to network 108. Browser applica-
tions typically include a graphical user interface (GUI) with
provisions for displaying hypertext mark-up language
(HTML) files within a window or frame of the user interface.

In an embodiment of the invention, an HTML page 116 is
received from server 102 by computer 112, and displayed by
a browser application. Any suitable mark-up language or
document format language may be used for page 116, includ-
ing but not limited to XHTML and VRML. A page-enabled
agent application 120, such as a Java™ applet, is embedded in
page 116 and begins to execute when the page 116 is opened,
to perform the function of an agent in a distributed computing
system.

It should be appreciated that numerous methods may be
employed to embed an agent in a content page, such as pages
116, 124. It is not necessary that the agent be coded in its
entirety in the content page. In an alternative embodiment, the
agent 120 is not hard-coded in page 116 as it is received from
host layer 104. Instead, the agent is loaded into an active page
of'the user’s browser application by an object on page 116. In
other words, the agent application 120 is called by page 116.
For example, under some browser standards, the agent may
be loaded into an i-frame of page 116 after it is opened by the
browser. An i-frame is a page frame for which content is
retrieved from an external source as specified in the page. For
further example, page 116 may contain an agent-loading
application that is not itself an agent. Instead, the agent load-
ing application obtains and loads the agent application from a
source specified in the loading application.

The agent-calling embodiment has the advantage of per-
mitting a distributed computing system operator to readily

20

25

30

35

40

45

50

55

60

65

4

control the operation of agents across clients receiving web
pages from multiple different sources. An agent-calling
scheme would operate in much the same way as the control of
prior-art Internet advertising banner content, that can be con-
trolled by a single third-party marketing company, instead of
by the individual web sites from which the web pages with
advertising banners are received. Thus, the agents can be
revised as often as desired by the system operator, without any
need to alter web pages containing user content, such as pages
116 and 128. This ability to control agents called from the
web pages of multiple independent web sites may make a
distributed system according to the invention much easier to
scale up and to control, and therefore may be especially
preferred for large scale, flexible distributed systems. Indeed,
it is conceivable that, by using an agent-calling architecture, a
distributed computing system operator could aggregate and
sell (or otherwise use) distributed computing resources using
a centralized control system, in much the same way as the
content of advertising banners, pop-up windows, and the like
are aggregated and controlled today. Such a system could be
reprogrammed “on the fly” for solving different computing
problems, merely by substituting different agents for those
previously called by the content pages.

Whether is called by page 116, or hard-coded into it, the
agent application 120 may operate in different ways. In an
embodiment of the invention, the applet embedded in or
called by page 116 causes a pop-up window 122 to appear.
The pop-up window may contain any desired message, and/or
may permit the user a degree of control over the agent pro-
cess. For example, a user may be permitted to disable certain
agent operations, if desired. For many applications, however,
avisible pop-up window may not be necessary, or even desir-
able.

Page 116 also contains content 118 that may be completely
unrelated to the function of the page-enabled application. In
essence, the embedded agent 120 is hosted by the content,
because it is the presence of the content that motivates a user
of'the computer 112 to request page 116 from server 102. In
exchange for receiving the requested content, the user accepts
the embedded agent carried on the same page, in much the
same fashion as users accept advertising banners and the like.

In an embodiment of the invention, the embedded agent is
less noticeable to a user at the client computer than an adver-
tising banner. Preferably, the agent is configured in a manner
that is likely to be unnoticed by a user, by limiting the agent’s
use of resources at the client computer. For example, the agent
may be configured to be invisible, to use only idle micropro-
cessor cycles, and to limit its use of memory to a specified
amount, or to a specified portion of available resources.

Furthermore, content 118 is the feature of interest to the
user, so for this additional reason, it may be desirable to
configure the embedded agent to be concealed from the user’s
view. A concealment strategy is implemented at computer
114, displaying a page 124 containing a concealed agent 126
and displayed content 128. Agent 126, like agent 120, begins
to execute when page 124 is opened. It may be concealed in
any suitable manner, for example, by opening it or placing it
ina “passive popup” window behind page 124. Passive popup
windows are described in more detail in co-pending U.S.
application Ser. No. 09/419,698 filed on Oct. 14, 1999, which
is incorporated herein by reference. The passive popup win-
dow may be configured to be and remain minimized and/or
hidden even when an attempt is made to make it visible or
bring it to the forefront. The agent may also be concealed by
opening it in a hidden frame of page 124.

Agents 120, 126 may be configured to operate for so long
as the session in which they are launched continues; e.g., until

US 8,117,258 B2

5

the client computer is disconnected from the network 108,
turned off, or rebooted. This permits individual users to
readily shut down an agent process in the event that it causes
a conflict with another process operating on the client com-
puter. The client computer then ceases to participate in the
distributed computing system until such time as a page con-
taining an embedded agent is again requested from the host
layer 104.

A disadvantage of limiting the operation of agents in this
manner may be that the operational life of individual agents is
likely to be relatively brief. This disadvantage may be ame-
liorated by continuously distributing additional agents with
pages requested from the host layer. Thus, the amount of
resources available to the distributed computing system will
be a function of the rate at which pages are requested from the
host layer and the average client-node session time. In turn,
the amount of client resources consumed by the distributed
computing system will bear a direct relationship to the
amount and quality of network traffic that the host layer is
able to attract by making carrier content available. Because
the traffic at the host layer is likely to be related to the value
that users place on the content available there, a distributed
system according to this embodiment essentially performs a
rationally based quid-pro-quo exchange of content for dis-
tributed computing resources. This may make the distributed
system more likely to be aligned with public expectations and
rules relating to transactions over public networks, without
requiring users to expressly consent to installation of an
agent.

In an alternative embodiment, the embedded agent causes
an executable agent file to be stored on the client computer so
as to be executed whenever the computer is booted up. This
approach negates the necessity for users to request a page
from the host layer to initiate an agent process, but may also
be perceived as requiring the express consent of each indi-
vidual user for legal and/or public relations reasons, which
will tend to reduce the number of available clients. Even so,
the invention according to this alternative embodiment may
provide advantages relative to prior-art agent distribution sys-
tems, in that users may be spared the need to take any affir-
mative action to download an agent application. Instead, the
agent is embedded in content that users request for other
reasons, and individual users need only act passively, or in a
minimal fashion, to consent to the installation of the execut-
able agent as a regular process of their computers.

A variation of this embodiment would permit the agent to
operate only during client sessions in which the carrier that
hosts the agent is accessed or operated by the user at the client
node. For example, the agent may be embedded in a “free-
wear” software application for performing a function desired
by the user, and activated whenever the software application
is executed. An application designed for continuous use and
that consumes a limited, defined amount of resources, such as
an application for displaying a stock ticker or the like, may be
particularly appropriate. The agent may run in the back-
ground all the while the application is running in the fore-
ground. Another example might be a computer game or appli-
cation for streaming video or audio. For further example, the
agent may be embedded in a hardware device, such as a video
game device, that is installed in the client computer, and
activated whenever the hardware device is operated. These
approaches have the advantage of preserving a relationship
between the amount that a client uses the carrier software or
hardware, and the extent to which the client resources are
used by the distributed computing system, possibly reducing
requirements for obtaining users’ express consents.

20

25

30

35

40

45

50

55

60

65

6

Whatever the distribution mode, but especially when dis-
tributed by embedding in web pages, both agents 120, 126
may be configured to read and write information to and from
a“‘cookie” residing on their respective client computers, such
as cookies 130, 132, respectively. A cookie is a file that
contains one or more network addresses, for example, URL’s,
and any related information desired to be stored in relation to
the identified address. When the client accesses a network
address that is specified in the cookie, any related information
in the cookie file is automatically sent to the specified address,
as known in the art. Similarly, the cookie file can be automati-
cally updated with information from a web host when the web
host is contacted by the client.

Cookie-type protocols are normally used for providing
user-specific information to websites, but may be adapted as
a convenient way to exchange process data with other com-
puters in a distributed computing network. By writing process
data to a cookie file, an agent operating at a client node can
thereby share the data with a host layer of a distributed system
without any need to open up a separate communication link.
The process data is simply read whenever the user connects to
the host. Raw data may be provided to the client by the host in
the same way; i.e., by automatically writing to a cookie on the
client side.

If desired, cookie information may be broken into multiple
files. In this scheme, a primary cookie is first read in a con-
ventional manner. The primary cookie contains the locations
of other related cookie files, which are then read or written to
as desired. Either the host or agent may write to or read
multiple cookie files. The use of multiple cookie files may be
particularly useful for handling data that is encoded for error
detection and correction, or that is encrypted for security.

To ensure that cookies 130, 132 are provided to the host
layer as often as necessary, the pages containing agents 120,
126 may be automatically refreshed at periodic intervals,
thereby causing the information in cookies 130, 132 to also be
automatically exchanged.

In the alternative, the agent may open up a communication
link to the host layer whenever an exchange of information is
desired. This approach may allow for exchange of data at time
other than when pages 116, 124 are open. However, the agent
will tend to require more complex coding to handle the com-
munication scheme, which may be undesirable. In general,
agents should be relatively compact so as to not unduly
increase the size of the carriers that host them and to be less
noticeable when installed and operating on a client node.

System 100 may further include a computer 140 for oper-
ating an origination layer 142 of a distributed computing
system. The origination layer designs the solution algorithms
to be executed by the distributed computing system, and may
perform other system design tasks. Computational results
may be reported to the origination layer, or to any other
specified location. In the alternative, the origination layer 142
may operate in computer 102 with host layer 104, or be
distributed across a plurality of computers connected to net-
work 108.

In summary, it should be apparent that one of the distinctive
features of system 100 is how the distribution of agents is
handled. In each embodiment, the agent is embedded in con-
tent and distributed to client nodes as a result of users who
request the content from the host layer. The users need not
expressly consent to activation of the agent on a client node,
and in some embodiments, may not even be aware that the
agent is operating. Thus, a significant barrier to the distribu-
tion of the agents is overcome in a manner that is mutually
beneficial to users and operators of distributed computing
systems.

US 8,117,258 B2

7

FIG. 2 is a block showing elements of a system 200 for
distributed computing using carrier-hosted agents. A process
originator 202 defines the computational problem 212 to be
solved, such as a technological problem requiring a massive
number of computations or data manipulation as part of a
solution algorithm. The process originator defines the param-
eters of the input data and desired results as part of stating the
problem 212. Virtually any entity seeking to perform a com-
putationally-intensive algorithm may play this role.

The process originator provides the problem 212 to a sys-
tem designer 204, who generates a solution system 214. The
solution system 214 includes a solution algorithm embodied
in agents for distribution to client nodes, as well as manage-
ment instructions for a host layer. The management instruc-
tions may include instructions for managing the distribution
of raw data to the client nodes, the receiving of process data
back from client nodes, error detection and correction of data,
encryption of data, further processing of data at the host level,
and reporting of results. For more efficient design, the solu-
tion system preferably comprises pre-existing software mod-
ules that are configured according to parameters specified by
the system designer, and compiled together with standardized
modules for communication, data correction, and so forth.
The system designer 204 provides the solution system to web
host 208.

The web host 208 operates the host layer for the distributed
computing system, such as host layer 104 shown in FIG. 1.
The web host integrates the solution system 214 from the
system designer with content 216 received from a content
provider 206. This integration includes configuring the con-
tent as carriers for the agents, and embedding the agents in the
carriers. For example, a plurality of interlinked HTML pages
comprising a web site may be created, and the agents embed-
ded in the pages, or in selected ones of the pages. In the
alternative, either of the system designer 204 or the content
provider 206 may integrate the solution system 214 with
content 216 and provide it to the web host 208.

As part of the host layer, the web host may operate a web
site to attract network traffic for the distribution of agents.
After initiating the host layer, agents and raw data 220 are
distributed to client nodes along with content requested by the
client nodes. Raw data 218 is received from the process
originator 202 and distributed to clients 210 by the web host.
The raw data may be embedded with the agents, and/or pro-
vided to the clients at the request of operational agents. The
web host receives processed data 222 from the distributed
clients 210, performs any further processing as specified by
the solution system, and reports results 224 to the process
originator as desired. Within this general framework, a great
many variations are possible. It should be noted that the
process originator 202, system designer 204, content provider
206, and web host 208 need not belong to separate entities.
Even the distributed clients 210 need not belong to separate
entities; for example, a web host may distribute agents only to
clients belonging to a private group connected to the Internet,
or to a privately-owned network.

FIG. 3 is a process diagram showing layers of a method 300
for distributed computing using carrier-hosted agents, and
exemplary steps that may be performed in the respective
layers. Each layer may itself be considered to be a method or
sub-process comprising the specified steps. Although the
steps have been grouped into distinct layers, certain steps may
be performed in more than one layer, or in a layer different
from that specified. The organization into layers is intended to
aid understanding of the invention, and not to impose limita-
tions on how particular steps are performed. Many steps of
method 300 may be performed in parallel, and so no arrows

20

25

30

35

40

45

50

55

60

65

8

that might suggest that a particular sequence of steps is
required have been included in the diagram of FIG. 3. Where
a particular sequence of steps may be logically required, this
will be clear from the context.

In an origination layer 302, a computational problem is
defined at step 308. The computational problem is the creative
requirement that drives method 300, and contains a compu-
tational goal or goals. At step 310, a solution system, com-
prising one or more solution algorithms to be executed by
distributed agents, is defined. The design process may incor-
porate ideas and programming methods as known in the art of
distributed computing, together with a design for embeddable
agents as described herein.

At step 312, the agent modules are developed and pro-
grammed with the desired solution algorithm. Again, any
suitable programming method or language may be used. Pref-
erably, the programming language selected is designed to be
machine-independent, such as Java™, so that agents may be
distributed to machines of different types. Each agent should
be designed to operate independently in the anticipated
machine environment, as soon as conditions required for
activation have been met. For example, in an embodiment of
the invention, the activation condition is fulfilled when an
HTML page containing the agent is loaded into a client
machine by a browser.

At step 314, agents are embedded in a selected carrier.
Because of their self-executing properties, HTML-type web
pages make suitable carriers. In such case, the embedding
process occurs as part of the authoring of the web pages. The
web pages with embedded agents may be included in a set of
interlinked, related web pages making up a web site. Web
content may be integrated into the pages at this step. Prefer-
ably, the web content is of a type that will attract a large
amount of traffic to the site. Web portals, search engines, and
entertainment sites provide but a few examples. For a mem-
bers-only site, express consent to the use of agents at client
sites may be obtained from users through a user registration
process, which may also be implemented using web pages.

Steps for hosting and managing operation of a distributed
computing system may be considered as comprising a hosting
layer 304. The hosting layer may itself be performed by a
distributed resource over the network, such as by several
independent machines, or on a single machine. Certain steps,
such as the distribution of agents, need not be performed by a
computing machine at all, or may involve the use of additional
instrumentalities. For example, step 316 may be performed
by distributing a software application on a disc media through
the mail. In a preferred embodiment of the invention, how-
ever, the distribution of carriers is performed entirely by a
computer through the operation of a web site, as previously
described.

At step 318, raw data is sent to the client nodes to which
agents have been or will be distributed. For certain applica-
tions, it may be desirable to encrypt the raw data before
sending to a client node. As previously described, cookie files
may be utilized for distribution of raw data. In the alternative,
raw data may be streamed to an operational agent. Generally,
it may be preferable to send raw data only when requested by
an operational agent, for greater control of the data. Also, to
facilitate management of the computational process, data
should be provided in packets having an optimal size, which
may vary depending upon conditions at individual clients as
well as the operating state of the distributed system as a
whole. As packet size decreases, management and commu-
nication burdens generally increase; conversely, larger pack-
ets may overload client nodes and make it more difficult to

US 8,117,258 B2

9

coordinate and balance processing across the system. Various
methods for managing data flow may be applied, as known in
the art.

At step 320, process data returned by the distributed agents
is received at a designated processing location. Again, cookie
files or streaming may be employed for data transfer, or any
other suitable method. At step 322, the received data may be
decoded, checked for errors, and corrected using any suitable
method. Received data may also be decrypted prior to being
decoded. At step 326, the received data may also undergo
further processing at the host level as required by the solution
system, or be sent again as raw data to distributed agents for
another round of computation. Finally, results as defined by
the origination layer are reported to a specified location at
periodic intervals, or when processing has been completed for
specified sets of raw data.

Meanwhile, at the client nodes, the distributed agents per-
form steps comprising an agent layer 306. Upon being acti-
vated, each agent may obtain the current calculation state and
raw data from processing from a file previously placed on the
client node by the host layer, or by sending a request for data
to the host layer. After obtaining raw data, the agent operates
on the raw data at step 330 to produce process data according
to instructions determined by the solution algorithm of the
solution system defined at step 310. Raw data may be
decrypted and/or decoded for error detection and correction,
prior to processing by the agent.

During processing step 330, the agent may periodically
save process data and state information to a client-side file,
such as a cookie file, at step 332. Of course, data also may be
saved whenever the agent process is finished or terminated.
Prior to saving and/or ending process data, the process data
may be encoded for error detection and correction at the host
level, and/or encrypted.

Atperiodic times or whenever processing is completed, the
agent may send the process data back to the host layer and/or
request additional raw data at step 334. In the alternative, the
process data may reside in the cookie file until the address
associated with the cookie is sent by the browser, for example,
by using a periodic meta-refresh command or a refresh com-
mand generated by a calculation script to refresh an active
web page containing the address.

Having thus described a preferred embodiment of a
method and system for distributed computing using carrier-
hosted agents, it should be apparent to those skilled in the art
that certain advantages of the within system have been
achieved. It should also be appreciated that various modifi-
cations, adaptations, and alternative embodiments thereof
may be made within the scope and spirit of the present inven-
tion. For example, a system employing agents carried by web
pages provided by a web host has been illustrated, but it
should be apparent that the inventive concepts described
above would be equally applicable to other carrier-hosted
systems. The invention is further defined by the following
claims.

What is claimed is:
1. A computer-implemented method comprising:
by a computer system comprising computer hardware:
receiving a request from a computing device to perform
a distributed task on hardware or software resources
associated with the computer system;
receiving raw data from the computing device for pro-
cessing;
providing an interface for setting of processing param-
eters by an end user;

20

25

30

35

40

45

50

55

60

65

10

automatically initiating performance of the distributed
task using the received raw data and the processing
parameters without substantial user interaction;

periodically storing in a local data structure operating
state information associated with the computer sys-
tem during performance of the distributed task that
has been initiated; and

providing an interface for viewing current operating
state information associated with the computer sys-
tem during performance of the distributed task that
has been initiated.

2. The method of claim 1, wherein use of the hardware or
software resources associated with the computer system is
placed for sale.

3. The method of claim 1, wherein the distributed task can
be dynamically modified by the computing device.

4. The method of claim 1, wherein the request to perform
the distributed task is provided in a file.

5. The method of claim 1, wherein the request to perform
the distributed task is provided via a webpage.

6. The method of claim 1 further comprising providing
results of said performance of the distributed task to the
computing device.

7. The method of claim 6, wherein the results are provided
periodically.

8. A computing system comprising:

a processor; and

a computer readable medium storing machine-executable

instructions including one or more modules configured

for execution by the processor in order to cause the

computing system to:

receive a request from a computing device to perform a
distributed task on hardware or software resources
associated with the computing system;

receive data from the computing device for processing;

initiate performance of the distributed task using the
received data without substantial user interaction;

periodically store in a local data structure operating state
information associated with the computing system
during performance of the distributed task that has
been initiated; and

provide an interface for viewing current operating state
information associated with the computing system
during performance of the distributed task.

9. The computing system of claim 8, wherein the distrib-
uted task can be dynamically modified by the computing
device.

10. The computing system of claim 8, wherein the request
to perform the distributed task is provided via a webpage.

11. The computing system of claim 8, wherein the com-
puter readable medium further stores machine-executable
instructions configured for execution by the processor in
order to cause the computing system to provide results of said
performance of the distributed task to the computing device.

12. A non-transitory computer-readable medium encoded
with instructions encoded thereon, wherein the instructions
are readable by a computing system in order to cause the
computing system to perform operations comprising:

receiving a request from a computing device to perform a

distributed task on hardware or software resources asso-
ciated with the computing system;

receiving data from the computing device for processing;

initiating performance of the distributed task using the

received data;

US 8,117,258 B2

11

periodically storing in a local data structure operating state
information associated with the computing system dur-
ing performance of the distributed task that has been
initiated; and

providing an interface for viewing current operating state

information associated with the computing system dur-
ing performance of the distributed task.

13. The non-transitory computer-readable medium of
claim 12, wherein use of the hardware or software resources
associated with the computing system is placed for sale.

14. The non-transitory computer-readable medium of
claim 12, wherein the distributed task can be dynamically
modified by the computing device.

15. A method comprising:

storing a distributable agent configured for transmission to

each of a plurality of distributed client nodes, the dis-

tributable agent configured to execute on the distributed

client nodes to

autonomously perform a processing function that trans-
forms raw data to produce process data at the distrib-
uted client nodes;

periodically store in a local data structure operating state
information associated with respective client nodes
during performance of the processing function; and

10

20

12

provide an interface for viewing current operating state
information associated with respective client nodes;
integrating, using one or more servers, transmitted distrib-
utable agents with first content configured to cause the
transmitted distributable agents to operate on client
nodes in response to downloading the first content;
serving the first content in response to requests from the
distributed client nodes; and
providing raw data to the distributed client nodes and
receiving processed data from the distributed client
nodes in coordination with the transmitted distributable
agents at the distributed client nodes.

16. The method of claim 15, wherein the transmitted dis-
tributable agents are configured to operate automatically to
perform the processing function without user interaction.

17. The method of claim 15, wherein the transmitted dis-
tributable agents are provided in a file.

18. The method of claim 15 further comprising providing
an interface for setting of processing parameters by an end
user.

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. 18,117,258 B2 Page 1 of 1
APPLICATION NO. 1 12/886827

DATED : February 14, 2012

INVENTORC(S) : Shuster

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

Page 2, item (56), under “Other Publications™, in Column 2, Line 4, delete
““HowSETI@homeworks”,” and insert -- “How SETI@home works”, --.

Column 11, line 17, in Claim 15, delete “nodes to” and insert -- nodes to: --.

Signed and Sealed this
Fourteenth Day of August, 2012

David J. Kappos
Director of the United States Patent and Trademark Office

