a2 United States Patent

US008316452B2

(10) Patent No.: US 8,316,452 B2

Shuster (45) Date of Patent: *Nov. 20, 2012
(54) COMPUTER NETWORK STORAGE (56) References Cited
ENVIRONMENT WITH FILE TRACKING
U.S. PATENT DOCUMENTS
(75) Inventor: Gary Stephen Shuster, Fresno, CA 6,198,850 Bl 3/2001 Banton
(us) 6,209,096 B1* 3/2001 Taruguchicccccooenee. 713/193
6,311,214 B1* 10/2001 Rhoadsc.ccccecevvruennee. 709/217
. 6,389,472 Bl 5/2002 Hughes et al.
(73) Assignee: Hoshiko LL.C, Henderson, NV (US) 6,493,744 Bl 12/2002 Emens et al.
6,591,367 Bl 7/2003 Kobata et al.
(*) Notice: Subject. to any disclaimer,. the term of this g:;%:gzé g} N 13%8845‘ %(lfflilashi """""""""" 158/1.14
patent is extended or adjusted under 35 7050362 B2 52006 Shuster
U.S.C. 154(b) by 464 days. 7,493,660 B2 2/2009 Shuster
. 2002/0083070 Al 6/2002 Shuster
Tlhl.s patent is subject to a terminal dis- 2006/0143364 Al 6/2006 Shuster
claimer.
FOREIGN PATENT DOCUMENTS
(21) Appl. No.: 12/370,047 WO WO 98/25373 A2 6/1998
* cited by examiner
(22) Filed: Feb. 12, 2009 Primary Examiner — Samson Lemma
(65) Prior Publication Data (7 ABSTMCT .
A method and system for operating a network server to dis-
US 2009/0171981 Al Jul. 2, 2009 courage inappropriate use are disclosed. The method pro-
vides for altering files on the server in such a way so as
Related U.S. Application Data essentially not affect acceptable, desired file types in any
noticeable way, and to substantially corrupt undesirable file
(63) Continuation of application No. 11/356,575, filed on types. The method may be apphed 1o every file Copied 10 or
Feb. 17, 2006, now Pat. No. 7,493,660, which is a from a memory of the server. In the alternative, the method
continuation of application No. 09/859,948, filed on may be applied only to selected files or types of files on the
May 16, 2001, now Pat. No. 7,051,362. server. In particular, the files corrupted by altering according
60 o o to the invention are executable software files and compressed
(60) Provisional application No. 60/204,994, filed on May files, that are generally not fault-tolerant. Fault tolerant files,
16, 2000. such as uncompressed text and graphics files in common
Internet-compatible formats, are not noticeably affected. The
(51) Imt.ClL network server will therefore no longer be useful for storing
HO04K 1/00 (2006.01) or transferring undesirable files, and such use will be discour-
(52) US.Cle i 726/26;726/22 aged. According to a related embodiment of the invention, a
(58) Field of Classification Search 713/160-161, ~ System comprises a server having an application that per-

713/193, 165-166; 726/2,26, 22; 709/219,
709/229; 380/28
See application file for complete search history.

forms one of the embodiments of the method according to the
invention.

20 Claims, 2 Drawing Sheets

U.S. Patent Nov. 20, 2012 Sheet 1 of 2 US 8,316,452 B2

13

[]!.

15

Fig. 1

U.S. Patent Nov. 20, 2012 Sheet 2 of 2 US 8,316,452 B2

SELECT FILE IN
MEMORY

OPEN AND READ
DIRECTORY

32

SET A,
BABOF
MINSIZE

CHARACTERIZE 1R
FILE g

SELECT
ALTERATION
ALGORITHM

OPEN FILE

ALTERFLEIN B
MEMORY [

42

P

Yes——{ GLOSE FILE i
FINISH X

FINISH

INCREMENT i

FLPBITOF |
E_| [{AM)+BABOFTTH §
BYTE :

US 8,316,452 B2

1
COMPUTER NETWORK STORAGE
ENVIRONMENT WITH FILE TRACKING

CROSS REFERENCE TO RELATED
APPLICATIONS

This application is a continuation of U.S. application Ser.
No. 11/356,575 filed Feb. 17, 2006, now U.S. Pat. No. 7,493,
660, which is a continuation of U.S. application Ser. No.
09/859,948, filed May 16,2001, now U.S. Pat. No. 7,051,362,
which claims priority pursuant to 35 U.S.C. §119(e) to U.S.
Provisional Application Ser. No. 60/204,994, filed Mar. 16,
2000, which applications is are specifically incorporated
herein, in its their entirety, by reference.

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates to methods and systems for
operating a server connected to a wide area network, such as
the Internet, and particularly to a method and system for
receiving, serving, and storing files in response to requests
from users, whereby inappropriate use of the server, such as
illegal copying and distribution of copyrighted content, may
be selectively discouraged.

2. Description of Related Art

Publicly accessible servers, in particular servers that pro-
vide storage space for no charge, such as servers on free web
hosts, are often used inappropriately in violation of agreed
terms of service and copyright laws for the distribution of
copyrighted files such as software, music, image and video
files. Such file types often consist of or contain illegally
copied content. The illegally copied content may lend an
undesirable taint to operators of web hosting services who do
not wish to be perceived as encouraging, condoning, or par-
ticipating in copyright violations. Additionally, the storage
and exchange of these illegal or otherwise inappropriate files
consumes bandwidth and other resources needed for more
appropriate uses, thereby choking and discouraging the uses
that the web server is intended to serve. Another injury that
may be caused by inappropriate or illegal copying is dispro-
portionately heavy use of the server by relatively few users,
thereby reducing performance for all users, and reducing the
number of subscribers that the hosting service attracts. A
related problem is the devaluation of advertising space as a
result of people downloading such files, and the potential for
alienating advertisers who have purchased advertising space
on the servers that are being used inappropriately.

Therefore, a method and system is needed to discourage
inappropriate use of publicly available, network-connected
server space, without adversely affecting intended uses of the
server space or restricting public access. The method and
system should integrate seamlessly and cost-effectively with
existing network protocols and server software and hardware.

SUMMARY OF THE INVENTION

A method and system for operating a network server are
provided, whereby files on the server are altered in such a way
s0 as to essentially not aftfect appropriate, desired file types in
any noticeable way, and to corrupt inappropriate, undesirable
file types. As used herein, to “corrupt” a file means to alter it
so that it becomes substantially unusable for its intended
application. For example, a corrupted executable file cannot
be executed without generating a fatal error or otherwise
failing to operate in the intended manner; music in a corrupted

20

25

30

35

40

45

50

55

60

65

2

music file cannot be played; and files within a compressed
multi-part file cannot be extracted and/or used.

The method may be applied to every file copied to or from
a memory of the server. In the alternative, the method may be
applied only to selected files or types of files on the server. In
particular, the files corrupted by altering according to the
invention may be executable software files and compressed
files that are generally not fault-tolerant. Fault tolerant files,
such as uncompressed text and graphics files in common
Internet-compatible formats, are not noticeably affected.
Consequently, the invention is particularly useful for operat-
ing a server wherein the desired or acceptable file types are
fault-tolerant, and the undesired file types are generally not
fault-tolerant. The destructive alteration of undesirable file
types may be made difficult or impossible to reverse by any-
one lacking knowledge of the corruption scheme. The net-
work server will therefore no longer be useful for storing or
transferring undesirable files, and such use will be discour-
aged. System bandwidth is thereby conserved, and the
response of the server to appropriate uses can be greatly
improved. Furthermore, the method can be implemented in a
variety of different systems without consuming significant
system resources.

According to an embodiment of the invention, the server is
connected through a network, such as the Internet, to a plu-
rality of client devices, and is configured to transfer informa-
tion between any selected one of the client devices and a
memory for static storage of information. The method com-
prises the steps of selecting a file residing in a memory of the
server for alteration by applying predetermined screening
rules, and altering a relatively small discrete portion of the
identified file according to an algorithm comprising a set of
predetermined alteration rules. The predetermined alteration
rules are such that the information value and functionality of
fault-tolerant files is essentially unchanged, while fault-intol-
erant files are essentially rendered unusable. The amount of
data altered in the file may be as small as a single bit. The
alteration step may be performed as files are served from the
server or as they are transferred to the server. In the alterna-
tive, the alteration step may be performed while the files are
stored in a static server memory, such as by using a disk
crawling method.

Preferably, the alteration rules provide for placing any
altered bits towards the end of the file, where they are least
likely to affect appropriate file types, for example, HTML and
graphics files. The location for placing altered bits may be
selected at random, so that the altered file cannot be repaired.
In the alternative, a complex quasi-random algorithm may be
used to select the location of the altered bits, so that the file
can only be repaired by someone who knows the algorithm. A
quasi-random algorithm has the added benefit of making
difficult the detection of the precise algorithm used via a
comparison of various files pre- and post-alteration. The alter-
ation may be made “invisible”—i.e., inconsequential—to
appropriate file types, by determining the manner in which
the alteration is made based on a putative file type. For
example, a harmless comment, such as “<!>"may be inserted
into a file with a “htm” extension (signifying an HTML
formatted file). Insertion of inconsequential information
based on putative file type is particularly effective in discour-
aging deceptive naming practices, whereby undesired file
types are disguised by assigning a name signifying a desired
type of file to an undesired file. Traceable information may be
inserted into the files during alteration, to facilitate tracking
future copying of the file. Similarly, files may be “flagged” so
that they are not inadvertently altered more than once. In an
embodiment of the invention, selected types of bytes, such as

US 8,316,452 B2

3

non-text characters, are deleted or altered, to discourage dis-
guising undesirable file types as acceptable file types, such as
“1xt” or “.htm” files. These and other alteration rules may be
used and combined in various ways in an alteration method
according to the invention.

According to a related embodiment of the invention, a
system comprises a server having an application that per-
forms one of the embodiments of the method according to the
invention. A more complete understanding of the method and
system for operating a network server to discourage inappro-
priate use will be afforded to those skilled in the art, as well as
a realization of additional advantages and objects thereof, by
a consideration of the following detailed description of the
preferred embodiment. Reference will be made to the
appended sheets of drawings which will first be described
briefly.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a system diagram showing an exemplary system
for implementing a method according to the invention, and its
relationship to other elements.

FIG. 2 is a flow diagram showing exemplary steps for
performing a method according to the invention in general.

FIG. 3 is a flow diagram showing exemplary steps for
performing an alteration algorithm according to an exem-
plary embodiment of the invention.

DETAILED DESCRIPTION OF THE PREFERRED
EMBODIMENT

The present invention provides a method and system oper-
able at an application or higher network level for discourag-
ing inappropriate use of network resources. In the detailed
description that follows, like element numerals are used to
describe like elements shown in one or more of the figures.

Referring to FIG. 1, system 10 comprises a server 16 and an
application 14 executing on the server. Server 16 is typically
a general purpose computer configured for serving informa-
tion to multiple users across a network, but may comprise any
high-level computing device capable of performing the
method described herein. Application 14 comprises a pro-
gram of instructions for performing the method described
herein, and may additionally comprise instructions for per-
forming other server functions as known in the art.

Server 16 is connected to network 13 by communication
link 15 and to a memory 18 containing at least one file 17.
Memory 18 is any device, such as a hard drive or array of hard
drives, tape drive, optical disk drive, or similar device, for
static storage of information; and particularly, devices
capable of accessing and storing massive amounts of high-
level data for indefinite periods. In an embodiment of the
invention, memory 18 is physically adjacent to server 16 and
connected to the server through a server-operated bus 19.
Server 10 controls access by users, such as user 11 connected
to network 13, to memory 18. File 17 is a set of high-level data
encoded in a finite number of discrete information bits, such
as binary bits. A plurality of files such as file 17 are used to
exchange high-level information between a plurality of users,
such as user 11, connected to network 13 using client devices
such as terminal 12 and a communication link 15. Network 13
may be a wide area network, such as the Internet, a local area
network, or a combination of different types of networks. The
network may be operated by various protocols, such as TCP/
IP. The system and method according to the invention are not
limited to application with any particular type of network,
protocol, or client device.

5

20

25

30

35

40

45

50

55

60

65

4

Referring to FIG. 2, exemplary general steps of a method
20 for discouraging inappropriate use of memory connected
to a network are shown. An initial step of method 20 is the
selection at step 21 of a file in the server memory for alter-
ation. In an embodiment of the invention, alteration is applied
to all public files stored, or to be stored, in the servers static
memory storage. Generally, the method may be effectively
applied to all files received from public sources for storage on
the server. That is, files may be selected without determining
whether the file is an inappropriate type of file or an appro-
priate type of file. Of course, files received from trusted
sources, such as files created by a network administrator, are
preferably not subjected to alteration.

In the alternative to applying the method to all files in the
server’s public storage areas, the method may be applied to
files of a selected type, such as “.mp3” files. However, file
types may generally be disguised, so the latter embodiment
may suffer from the disadvantage of being easily circum-
vented. Furthermore, ifthe file type can indeed be reliably and
quickly determined, it may be simpler and more effective to
simply delete or refuse to transfer the offending file. However,
method 20 provides advantages relative to a method based on
a “detect and destroy” strategy, when it is not feasible to
automatically determine with certainty that an unknown file is
actually inappropriate. The advantages of method 20 may
accrue whether or not it is feasible to automatically identify
files that are suspected of being inappropriate. When sus-
pected files may be identified, the public files may be
screened or filtered in various ways to identify them as can-
didates for alteration according to method 20. For example,
only files greater than a predetermined size, such as ten kilo-
bytes or one-hundred kilobytes, may be subject to alteration.
For further example, a portion or all of each file may be
analyzed to identify patterns typical of particular file types,
and only files displaying patterns typical of inappropriate file
types may be selected for alteration. In the alternative, files
that display patterns typical of appropriate file types may be
spared alteration. Of course, files that are self-identified as
being of an offending type, for example “.mp3” files, may
simply be deleted.

It may be further advantageous to avoid altering any par-
ticular file more than once. In some embodiments, the alter-
ation algorithm will reverse a particular bit or bits of the file.
Employing the same algorithm again may restore the file to its
original state, which is generally not desirable (although
reversibility may be advantageous when restoration of an
altered file is specifically sought). In other embodiments, the
original file may not be restored when the alteration algorithm
is employed a second time; however, repeated alteration may
cause appropriate file types to become corrupted or notice-
ably degraded. Repeated alteration of the same file may be
avoided by marking the file with a flag indicating that the file
has been altered. Files marked with the flag are then excluded
from further alteration. The flag may reside in the file itself.
For example, an unusual bit pattern may be placed at a speci-
fied location in the file. In the alternative, the flag may be
associated with the file elsewhere in the storage system. For
example, the file attributes may be changed, or the file may be
moved to a “read-only” directory containing only public files.

Whether or not applied to all public files in the server’s
static storage, or to a subset of public files, method 20 may
then be triggered by various events. For example, the receipt
of'a public request for a file transfer may trigger performance
of' method 20 upon the requested file. If more than one file is
requested, each file requested for transfer may be selected in
turn. As used herein, “transfer” includes both the transmis-
sion of a file from a public memory to a client device, and

US 8,316,452 B2

5

storage in the public memory of a file received from a client
device. Method 20 may be triggered by both types of trans-
fers, but may operate more efficiently if operated upon files
when received, before the files are placed in static storage.
According to this embodiment, the files will be stored in an
altered state. If efficiency is not a primary concern, it may, in
the alternative, be advantageous to alter files only as they are
served in response to a request. Altering files upon request
may require repeated processing of the same file (that is, of
files that are requested repeatedly), but can provide the advan-
tage of preserving an unaltered copy of every file in the
servers storage. In the alternative, both an unaltered copy and
an altered copy of every file may be stored, with only the
altered copy available for public use. In another alternative
embodiment, any unaltered files in the servers public storage
area are periodically identified and altered, with or without
preserving an unaltered copy. For example, at periodic inter-
vals, a “disk-crawling” program may be executed on the
server, where the disk-crawling program will alter all (or a
selected portion of) files stored in the server’s static memory
at any particular time.

At optional step 22, the selected file may be characterized,
that is, tentatively identified as being of a particular file type.
Characterization may be performed as part of a selection step,
or may be performed after a file is selected. In either case, the
process of characterization will be the same or similar.
Selected attributes and/or contents of the file are read and
characteristic data patterns are recognized. The data patterns
and file attributes are compared against a database of
attributes and patterns as related to file types, from which a
suspected file type is identified. Step 22 provides the advan-
tage of facilitating selection of more targeted alteration algo-
rithms having a higher probability of corrupting inappropri-
ate file types while not adversely affecting appropriate file
types. However, performance of step 22 may consume sub-
stantial resources and may require a higher initial investment
in programming. Accordingly, for simpler, low-cost imple-
mentation, step 22 may be omitted.

One likely use for file characterization is detection of com-
pressed files. Many inappropriate files comprise a plurality of
files compressed into a single file. The characterization step
may detect such compressed files, and also may identify the
location of the individual files within the compressed file.
Each individual file in the compressed file may then be tar-
geted for alteration. Of course, if it may be determined with
certainty that a compressed file is of an inappropriate type, the
compressed file may simply be deleted. However, on some
server systems compressed files may comprise both appro-
priate and inappropriate file types.

At step 23, an alteration algorithm is selected. A single
alteration algorithm may be applied to every file selected for
alteration. In the alternative, an algorithm may be selected
from a library of alternative algorithms, depending on factors
such as the suspected file type. Effective operation of method
20 essentially depends on selection of an appropriate alter-
ation algorithm. At the same time, various alternative rules
may be equally or comparably effective in selectively cor-
rupting only inappropriate file types. Therefore, the rules
described herein are merely exemplary in nature, and are not
intended to limit the scope of the invention.

Alteration algorithms in general comprise a set of rules
and/or a sequence of steps for selecting one or more binary
bits of a file. Binary bits, of course, have only two possible
states, so once the appropriate bits have been selected, alter-
ation at step 24 is performed by merely reversing their state,
that is, by changing a zero (0) bit to one (1), and vice-versa.
Bit reversal may be accomplished, for example, by perform-

20

25

30

35

40

45

50

55

60

65

6

ing an exclusive OR operation on a selected byte of the file
and an alteration byte. For more specific example, in an
eight-bit byte environment, an exclusive OR with the byte
“00000001” will reverse the lowest-value bit of any compari-
son byte. Optionally, the altered file may be stored in the
server’s static storage, with or without retaining a copy of the
unaltered file. After the desired bits have been altered, method
20 may be repeated for the next file, as indicated at step 25.

In an Internet (TCP/IP) environment, it is preferable to
select the bits to be altered occurring a specified number of
bytes, for example, ten kilobytes, after the first byte of the file.
Many file formats are less fault-tolerant near the beginning of
the file. In addition, it may be desirable to ensure that the
checksum for the early part of the file is not changed. Files
smaller than the specified number, e.g., less than ten kilo-
bytes, may be excluded from being altered. In a related
embodiment, the alteration bit or bits are selected in proxim-
ity to the end of the file, such as within ten kilobytes ofthe end
of the file.

To prevent circumvention and/or reversibility of the alter-
ation, the alteration algorithm may provide for selecting an
alteration bit or bits at random from the file to be altered. For
example, a random number generator may be used to select a
byte between ten and a thousand kilobytes. The random selec-
tion may then be repeated to alter as many bits as desired.
Technically, most software-driven random number genera-
tors do not actually produce random numbers, because the
pattern of numbers produced will typically depend on a
beginning seed number of some kind. However, any given
number produced by such generators using a secret, indepen-
dently derived seed can be kept secret, i.e., cannot be deter-
mined in a second operation by an independent party. For the
purposes of the present invention, maintaining secrecy of the
seed number will ordinarily be sufficient to ensure an unpre-
dictable, seemingly random result when operating on the
same file. This randomness and unpredictability should be
sufficient to prevent circumvention of the alteration, and
actual randomness should not be required. Should a truly
random number be desired, however, hardware devices for
generating such numbers are available. It should be noted in
addition, that as a practical matter, the number produced by a
typical software-driven random number generator may not be
predicted or determined even by a system operator in posses-
sion of the seed number. Therefore, an alteration based on
such a generator may be practically irreversible even by the
system operator.

To make circumvention more difficult without destroying
reversibility, a quasi-random generator may be used for bit
selection. A quasi-random generator appears to generate a
random number, but actually, it does not. Instead, it operates
in a reversible way on selected information in or associated
with the file to produce a variable number. The same variable
number will be produced if the quasi-random operation is
performed again with the same input values. It may therefore
be desirable for the input variables to include a variable num-
ber that is only available to the system operator, as well as a
variable number derived from information in the file that is
altered. For example, the quasi-random generator may count
the number of 1°’s (i.e., bits having a value of 1) occurring in
the first ten kilobytes of the file, add a secret number from a
look-up table of random numbers based on the day and time
of alteration, raise the sum of the counted and secret numbers
to the 5/3 power, and multiply by pi. The number generated is,
of course, not random. However, it would be difficult for a
party ignorant of the formula to determine how the number
had been generated and thereby generally circumvent the
alteration scheme, without possessing the formula employed.

US 8,316,452 B2

7

The secret independent input variable, if used, additionally
makes circumvention difficult in the case of a particular file,
because the bits that may be altered during future processing
of a file cannot be determined by comparing a previously
altered file to an unaltered file. That is, different bits will be
altered each time the file is processed using the method.
Meanwhile, the quasi-random number may be easily deter-
mined by one in possession of the secret formula and took-up
table. Actual formulas may be considerably more complex
than the simple example provided, without departing from the
scope of the invention.

In an embodiment of the invention, the alteration algorithm
determines the method of making an alteration based on a
putative file type determined, for example, by the file name
extension, file header, or other information associated with a
file that purports to identity the file type. The selected alter-
ation is invisible, that is, inconsequential, to the file of the
purported type. One way to accomplish an inconsequential
alteration is to insert surplus or altered information in a format
that will be essentially ignored when present in files of the
purported type. For example, a comment “<!>” may be
inserted within a purported HTML file, such as a file named
with an “htm” extension. In the alternative, any character
contained within an existing comment field of a file type
supporting delimited comment fields, such as an HTML file,
may be changed, for example, a space may be changed to a
dash within a comment. Such changes will have no effect
whatever on the display or other use of the file, and only an
inconsequential impact on the raw information content of the
file. However, if a purported file with delimited comments is
actually some other type of file, for example, an executable
binary-coded file, the change will likely effectively corrupt
the file.

In a related embodiment using alteration based on putative
file type, the alteration algorithm identifies a byte of the file
for which a byte synonym exists in the codes of the appropri-
ate file types. A byte synonym is a byte having a different
value that is interpreted in the same way, or in a substantially
very similar way, as the original byte, when in a file of an
appropriate type. For example, a common graphics file format
may display the hexadecimal string “AE” in a similar manner
to the string “AF,” such as displaying a pixel having a color of
a slightly different shade. The alteration step 24 then com-
prises substituting at least one of the identified bytes with a
byte synonym, for example, exchanging “AE” for “AF.” This
is unlikely to noticeably affect the files of the desired type, but
will effectively corrupt other file types such as binary coded
files.

A related approach that may be embodied in an alteration
algorithm is to identify bytes that are not likely to be present
in files of desired, appropriate types, and altering or deleting
those bytes. For example, many common, appropriate file
types primarily comprise coded text, for example ASCII-
coded text characters. Selected or all non-text characters in
the file may be deleted or altered, such as, for example, by
changing non-text characters to the ASCII space (blank) char-
acter. Text files are thus likely to be essentially unaffected by
the alteration, while other file types may be corrupted. Similar
algorithms may be employed with other (non-ASCII or non-
text) coding schemes. It may be particularly preferable to
select a byte-type specific algorithm based on the indicated
file type. For example, if the file is named with a “txt” exten-
sion, then selection of a text-specific algorithm may be pre-
ferred. If the file is named with some other extension, for
example, a “gif” extension, then a different algorithm may be
employed.

20

25

30

35

40

45

55

60

8

According to another embodiment of the invention, the
alteration algorithm comprises a step of inserting traceable
identifying information into a file of an inappropriate type.
The identifying information may comprise any bit pattern
that is not present in the unaltered file and that is sufficiently
distinctive to uniquely identify the file. At the same time, the
bit pattern should not cause corruption of appropriate file
types. Preferably, the identifying information will not be
readily recognized as such by those not in possession of the
identifying algorithm. For example, a particular pattern of
bits may be distributed at specified, secret and/or random
locations in the file. The location of the identifying bits may
be recorded in a separate database, or otherwise determinable
with the use of a secret formula or secret data, for use in
subsequent law enforcement efforts.

Elements of the foregoing alteration algorithms may be
combined in various ways without departing from the scope
of the invention. For example, it may be preferable to com-
bine algorithms which select bytes towards the end of a file
with random or quasi-random bit selection and substitution of
selected non-text characters. One skilled in the art may devise
various other suitable combinations.

Referring to FIG. 3, exemplary steps comprising an alter-
ation algorithm 30 of a method according to an embodiment
of the invention are diagrammed. Algorithm 30 is especially
suitable for implementation as a periodically executed disk-
crawling application of general applicability to various file
types. It is designed to corrupt binary-coded files and com-
pressed files, while creating only relatively minor alterations
in text files and most graphics files. At a designated time, the
directory containing the public files to be altered is opened
and the directory contents are read at step 31. Preferably, the
directory containing the files to be processed is designated as
atemporary holding area and only contains files that have not
yet been processed.

At step 32, the alteration variables are initialized. In the
exemplary algorithm 30, the variables comprise an alteration
interval (“Al”), expressed as an integer number of bytes, such
as 750 kilobytes; a number of bytes after the beginning of the
file (“BABOF”), such as ten kilobytes, before which no alter-
ation is to occur; and a designated minimum file size (“MIN-
SIZE”), such as ten kilobytes. In algorithm 30, these variables
are held constant during the disk-crawling procedure, how-
ever, they may vary depending on parameters such as file size,
if desired.

At step 33, a file in the directory is opened. At step 34, the
number of bytes in the file are counted and compared to the
MINSIZE variable. If the number of bytes in the file is equal
or less than MINSIZE, the file is not altered, and the file is
then closed and saved at step 35, preferably in a different
directory. The termination condition is then checked at step
36, and if files remain to be processed, the next file is selected
at step 37, repeating the cycle beginning at step 33.

If the number of bytes in the file is greater than MINSIZE,
a counter variable (“1”) is reset to zero at step 38. Then, a
productof Al and I, plus BABOF, is computed at step 39. This
computed number is the location of the byte to be altered in
the current execution cycle, and is compared to the file length
at step 39. To prevent termination of the alteration loop in the
first cycle (i.e., when i=0 and the byte location therefore
equals BABOF), the MINSIZE variable is preferably greater
than or equal to the BABOF variable. Thus, if in the initial
cycle the file length is greater than or equal to BABOF (and in
subsequent cycles, if the file length is greater than or equal to
BABOF plus each subsequent interval Al cumulative with
prior Al intervals), then a selected bit of the selected byte is
flipped at step 40. For example, the lowest-value bit of the

US 8,316,452 B2

9

byte may be flipped. At step 41, the counter variable i is
incremented, such as by 1. The cycle of steps 3941 are
repeated until the end of the file is indicated at step 39. The
altered file is then closed and saved, preferably in a different
file directory. The termination condition is then checked at
step 36, the next file selected at step 37, and the cycle repeated
beginning at step 33.

The cycle of steps 3342 are repeated until all files in the
directory have been processed. After all files have been pro-
cessed, the termination condition is satisfied and the process
terminates at step 36. One skilled in the art may program an
application for performing the steps of algorithm 30 in vari-
ous ways.

Having thus described a preferred embodiment of a
method and system for operating a network server to discour-
age inappropriate use, it should be apparent to those skilled in
the art that certain advantages of the within system have been
achieved. It should also be appreciated that various modifi-
cations, adaptations, and alternative embodiments thereof
may be made within the scope and spirit of the present inven-
tion. For example, exemplary alteration algorithms have been
described, but it should be apparent that the inventive con-
cepts described above would be equally applicable to other
alteration algorithms. The invention is further defined by the
following claims.

What is claimed is:

1. A method, comprising:

selectively accessing, by a computing system, data files

stored in one or more computer readable storage
devices, wherein the computing system comprises a pro-
cessor and a memory;

selecting a first file from the data files;

detecting one or more patterns of data units of the first file;

determining a type of the first file based on one or more of

the detected one or more patterns;

selecting an alteration algorithm based at least partly on the

determined type of the first file; and

inserting, using the selected alteration algorithm, informa-

tion identifying a source from which the first file was
received into the first file to create an altered first file,
wherein the identifying information is usable to facili-
tate tracking the source of the first file, and is inserted in
the first file so as to not corrupt any function of the first
file, wherein the altered first file is usable as a replace-
ment for the first file.

2. The method of claim 1, further comprising recording the
identifying information in a data structure.

3. The method of claim 1, further comprising selecting a
location of the first file for inserting the identifying informa-
tion so that the identifying information can be found using a
predetermined algorithm.

4. The method of claim 1, further comprising randomly
selecting a location of the first file for inserting the identifying
information.

5. The method of claim 1, further comprising, in response
to receiving a request for the first file from a client device,
configuring the identifying information to identify the client
device requesting the first file.

6. The method of claim 5, further comprising serving the
altered first file to the client device.

7. The method of claim 1, further comprising storing the
altered first file in the one or more computer readable storage
devices.

8. The method of claim 7, further comprising storing the
first file in the memory.

20

25

30

35

40

45

50

55

60

65

10
9. An apparatus, comprising:
a computing system adapted to connect to a network and to
transfer files between a storage device associated with
the computing system and a plurality of client comput-
ing devices, wherein the computing system includes a
processor and a non-transitory computer-readable
medium having stored thereon instructions executable
by the processor to cause the computing system to:
select a first file from a plurality of files;
detect one or more patterns within the first file;
determine a type of the first file based on one or more of
the detected one or more patterns;

select an alteration algorithm based at least partly on the
determined type of the first file;

generate identifying information that is usable to facili-
tate tracking of a source of the first file;

insert, using the selected alteration algorithm, the iden-
tifying information into the first file to generate an
altered first file, wherein the identifying information
is configured so as to not corrupt any function of the
first file, wherein the altered first file is usable as a
replacement for the first file; and

provide the altered first file in response to client requests
for the first file.

10. The apparatus of claim 9, wherein the instructions are
executable to cause the computing system to record, in a data
structure, a location of the identifying information within the
altered first file.

11. The apparatus of claim 9, wherein the instructions are
executable to cause the computing system to record the iden-
tifying information in a data structure.

12. The apparatus of claim 9, wherein the instructions are
executable to cause the computing system to select a location
of'the first file for inserting the identifying information so that
the identifying information can be found using a predeter-
mined algorithm.

13. The apparatus of claim 9, wherein the instructions are
executable to cause the computing system to randomly select
a location of the first file for inserting the identifying infor-
mation.

14. The apparatus of claim 9, wherein the identifying infor-
mation includes information usable to identify the source of
the first file.

15. The apparatus of claim 9, wherein the identifying infor-
mation includes an IP address of the source of the first file.

16. The apparatus of claim 9, wherein the instructions are
executable to cause the computing system to configure, in
response to receiving a request for the first file from a client
device, the identifying information to identify the client
device requesting the first file.

17. The apparatus of claim 9, wherein the instructions are
executable to cause the computing system to store the altered
first file in the non-transitory computer-readable medium.

18. The apparatus of claim 17, wherein the instructions are
executable to cause the computing system to store the first file
in the non-transitory computer-readable medium.

19. The method of claim 1, wherein the identifying infor-
mation includes an IP address of a client device from which
the first file was received.

20. A non-transitory computer-readable medium having
instructions stored thereon that are executable by a processor
of a computing system to cause the computing system to
perform operations comprising:

selectively accessing data files stored in one or more com-
puter readable storage devices;

selecting a first file from the data files;

detecting one or more data patterns in the first file;

US 8,316,452 B2

11

determining a type of the first file based on one or more of
the detected one or more patterns;

selecting an alteration algorithm based at least partly on the
determined type of the first file; and

inserting, using the selected alteration algorithm, informa-
tion identifying a source from which the first file was
received into the first file to create an altered first file,

12

wherein the identifying information is usable to facili-
tate tracking the source of the first file, and is inserted in
the first file so as to not corrupt any function of the first
file, wherein the altered first file is usable as a replace-
ment for the first file.

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. : 8,316,452 B2 Page 1 of 1
APPLICATION NO. : 12/370047

DATED : November 20, 2012

INVENTORC(S) : Shuster

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:
In Column 1, Line 12, delete “Mar.” and insert -- May --, therefor.
In Column 1, Line 13, delete “is are” and insert -- are --, therefor.
In Column 1, Line 14, delete “in its” and insert -- in --, therefor.
In Column 4, Line 6, delete “servers™ and insert -- server’s --, therefor.
In Column 5, Line 12, delete “servers” and insert -- server’s --, therefor.
In Column 5, Line 15, delete “servers” and insert -- server’s --, therefor.
In Column 7, Line 8, delete “took-up™ and insert -- look-up --, therefor.
In Column 9, Line 2, delete “3941” and insert -- 39-41 --, therefor.

In Column 9, Line 8, delete “3342” and insert -- 33-42 --, therefor.

Signed and Sealed this
Second Day of April, 2013

//42:2 / /éé P 9//:6(

et LA R

Teresa Stanek Rea
Acting Director of the United States Patent and Trademark Office

