United States Patent

US008621368B2

(12) 10) Patent No.: US 8,621,368 B2
Shuster et al. (45) Date of Patent: Dec. 31, 2013
(54) SYSTEMS AND METHODS OF VIRTUAL 5,880,731 A 3/1999 Liles et al.
WORLD INTERACTION 6,031,549 A 2/2000 Hayes-Roth
6,285,380 Bl 9/2001 Perlin et al.
. 6,801,930 B1 10/2004 Dionne et al.
(76) Inventors: Brian Shuster, Vancouver (.CA); Aaron 6,912,565 B1* 6/2005 Powers et al. ...oooon....... 709/205
Burch, Vancouver (CA); Friso 7,089,278 Bl 82006 Churchill etal.
Kristiansen, Vancouver (CA); Ian 7,593,864 B2 9/2009 Shuster
Neufeld, Burnaby (CA); Dirk Herling, ;’Zggsgi gé ff; %8}2 ;yﬂhmtnasl etal.
R . ,108, inn et al.
Vancouver (CA); Patrick Tyroler, 8,113,950 B2* 22012 de Judicibus ..o.ccccocre... 463/42
Vancouver (CA); Gary Shuster, Fresno, 8.167.724 B2 52012 Shuster
CA (US) 8,245,283 B2 82012 Dawson etal.
2001/0019337 ALl* 9/2001 Kim .c.cccoovvvvvvecininenne 345/757
(*) Notice: Subject. to any disclaimer,. the term of this (Continued)
patent is extended or adjusted under 35
U.S.C. 154(b) by 0 days. OTHER PUBLICATIONS
(21) Appl. No.: 13/590,187 McQuaid, Brad, “Brad McQuaid on Instancing!” retrieved on Jun.
10, 2013, from a version archived on Dec. 30, 2005, from the Internet
(22) Filed: Aug. 20,2012 Archive (www.archive.org), of http://www.gamergod.com/article.
php?article_id=2933.*
(65) Prior Publication Data .
(Continued)
US 2013/0047098 A1l Feb. 21,2013
L Primary Examiner — Tadeese Hailu
Related U.S. Application Data Assistant Examiner — FBric J Bycer
(60) Provisional application No. 61/524,956, filed on Aug. (74) Attorney, Agent, or Firm — Knobbe Martens Olson &
18, 2011. Bear LLP
(51) Imt.ClL 67 ABSTRACT
GO6F 3/048 (2013.01) Systems and methods of virtual world interaction, operation,
GO6F 17/00 (2006.01) implementation, instantiation, creation, and other functions
(52) US.CL related to virtual worlds (note that where the term “virtual
USPC T15/757; T15/234; 715/848; 715/849; world” is used herein, it is to be understood as referring to
715/850 virtual world systems, virtual environments reflecting real,
(58) Field of Classification Search simulated, fantasy, or other structures, and includes informa-
USPC e 715/234, 757, 848-850 tion systems that utilize interaction within a 3D environ-
See application file for complete search history. ment). Various embodiments facilitate interoperation
. between and within virtual worlds, and may provide consis-
(56) References Cited tent structures for operating virtual worlds. The disclosed

U.S. PATENT DOCUMENTS

embodiments may further enable individuals to build new
virtual worlds within a framework, and allow third party users
to better interact with those worlds.

5,461,710 A * 10/1995 Bloomfield etal. 715/839
5,802,296 A 9/1998 Morse et al.
5,872,575 A % 2/1999 Segal ...coccoviviniiiinnn 345/473 22 Claims, 29 Drawing Sheets
El @ ‘hnp:llwww.example.cuml I
2105 &
— 2103

US 8,621,368 B2

Page 2
(56) References Cited 2010/0229235 A1 9/2010 Dawson et al.
2010/0251337 Al 9/2010 Amsterdam et al.
U.S. PATENT DOCUMENTS 2010/0275136 A1 10/2010 Gower
2010/0333031 Al* 12/2010 Castellietal. 715/835
2002/0140698 Al* 10/2002 Robertson etal. 345/427 2011/0010675 Al 12011 Hamilton et al.
2003/0177187 Al* 9/2003 Levineetal. 709/205 2011/0054918 Al 3/2011 Hamilton et al.
2003/0197737 Al 10/2003 Kim 2011/0055136 Al 3/2011 Hamilton et al.
2004/0143852 AL* 7/2004 MeYerS ..oovvvvevvveern, 725/133 2011/0055267 AL~ 3/2011 Bolger etal.
2006/0140405 Al 6/2006 Thommana et al. 2011/0126272 Al 522011 Betzler et al.
2006/0234795 Al 10/2006 Dhunjishaw et al. 2011/0131509 Al 6/2011 Brillhart et al.
2007/0013691 Al 1/2007 Jung et al. 2011/0276477 Al 112011 Shuster
2007/0118420 Al* 5/2007 Jungetal. .o..cccoomvcromrrrrs. 705/10 2011/0301760 Al 12/2011 Shuster et al.
2007/0168214 Al 7/2007 Jung et al. 2012/0021825 Al* 12012 Harpetal.ccccoeeeee. 463/30
2007/0198658 Al* 8/2007 Aggarwaletal. 709/219 2012/0030289 Al 2/2012 Buford et al.
2008/0055306 Al* 3/2008 Kwoketal. ooooorrvr. 345/419 2012/0188233 Al 7/2012 Shuster et al.
2008/0081701 Al 4/2008 Shuster 2012/0220369 Al 8/2012 Shuster
2008/0092065 Al 4/2008 Jung et al. 2012/0223940 Al 9/2012 Dunstan et al.
2008/0120558 Al* 5/2008 Nathanetal. 715/764 2012/0231891 Al 9/2012 Watkins et al.
2008/0133392 Al 6/2008 Jung et al. 2012/0311463 Al 12/2012 Hickman et al.
2008/0263460 Al 10/2008 Altberg et al. 2013/0021338 Al 1/2013 Shuster et al.
2009/0037905 Al* 2/2009 Hamilton etal. 718/1 2013/0036371 Al 2/2013 Cohen
2009/0043604 Al 2/2009 Jung et al. 2013/0044106 Al 2/2013 Shuster et al.
2009/0094535 Al* 4/2009 Bromenshenkel ctal. ... 715/757 2013/0044107 Al 2/2013 Burch et al.
2009/0113066 Al 4/2009 Van Wie et al. 2013/0046854 Al 2/2013 Shuster et al.
2009/0141023 Al 6/2009 Shuster 2013/0047098 Al 2/2013 Shuster et al.
2009/0144282 Al 6/2009 Uramoto 2013/0047208 Al 2/2013 Shuster et al.
2009/0158150 Al 6/2009 Lyle et al. 2013/0047217 Al 2/2013 Shuster et al.
2009/0175559 Al* 7/2009 Hamilton, I etal. 382/298 2013/0217506 Al* 82013 Gaultetal. ..o 463/42
2009/0225074 Al* 9/2009 Batesetal. 345/419
2009/0235183 Al* 9/2009 Ha.milt(_)n etal. ... 715/757 OTHER PUBLICATIONS
%883;832;‘225 ﬁ} }8;3883 Egisssiimeit al. Nations, Daniel, “The truth about instances in MMOs,” retrieved on
2009/0276718 Al 11/2000 Dawso%l etal. Jun. 10, 2013, from http://www.examiner.come/article/the-truth-
2009/0287614 Al 11/2009 Amsterdam et al. about-instances-mmos.*
2009/0312080 Al 12/2009 Hamilton et al. Massey, Dana, “Dana Massey Asks Why Not? Instancing,” retrieved
2009/0319609 Al* 12/2009 Ferraroccceeoei. 709/204 on Jun. 10, 2013, from a version archived on Aug. 27, 2009, from the
2009/0325138 Al 12/2009 Shuster Internet Archive (www.archive.org), of http://www.mmorpg.com/
2010/0001993 Al 1/2010 Finn et al. showFeature.cfm/loadFeature/3429/Instancing html.*
2010/0005028 Al 1/2010 Hartley et al. International Search Report for International Application No. PCT/
20100026331 A1+ 22010 Dolbieretal Sasiat US2012051503 dated Feb 15, 2013
olbier etal. U e)
2010/0050004 Al 22010 Hamilton of al. E;I:i’ ?Onﬁ)rew M. “Virtual World Interoperability of Avatar Informa
® . .
%8}8;8?;353 ﬁ} ggg}g g(r:tl;ls; Ztt 21111' """"""""" 715/745 World of Warcraft. http://us.blizzard.com/en-us/games/wow/.
2010/0138455 Al 6/2010 Alewine et al. Downloaded Feb. 19, 2013. _ _
2010/0138755 Al 6/2010 Kulkarni et al. What is Second Life? Https://secondlife.com/whatis/?lang=en-US.
2010/0146409 Al* 6/2010 Yoshidaetal 715/757 Downloaded Feb. 19, 2013.
2010/0169779 Al* 7/2010 Masonetal. .. . 715/717
2010/0185939 Al* 7/2010 Greeneetal. 715/235 * cited by examiner

U.S. Patent Dec. 31,2013 Sheet 1 of 29 US 8,621,368 B2

FIG. 1

U.S. Patent Dec. 31,2013 Sheet 2 of 29 US 8,621,368 B2

~— 60

' 350

FIG. 2

U.S. Patent

Dec. 31, 2013

Location 1

301 |

IDENTIFY ATTEMPT
TO CROSS
BOUNDARY

v

302 |

DETERMINE
LOCATION
ASSOCIATED WITH
BOUNDARY

Sheet 3 of 29

v

303 |

CONTACT LOCATION
2 TO INITIATE
AVATAR TRANSFER

AVATAR

Location 2

y

306 —_|

COMPLETE
TRANSFER
PROTOCOL

DATA

RECEIVE INITIATION
OF AVATAR
TRANSFER

US 8,621,368 B2

| 304

Y

AUTHENTICATE
AVATAR FOR
TRANSFER

| 305

Y

DATA

COMPLETE
TRANSFER
PROTOCOL

| ¢ 307

y

309 —_|

DISENGAGE AVATAR

Y

CONVERT AVATAR
ITEMS USING
CURRENT WORLD
PARAMETERS

| 308

Y

FIG. 3

ENGAGE AVATAR
FOR INTERACTION

311

U.S. Patent

Dec. 31, 2013

Sheet 4 of 29

- 401
DETERMINE
CHARACTERISTICS
OF AVATAR
l 402
IDENTIFY ONE |
CHARACTERISTIC
.~ 403
Y
DETERMINE
ATTRIBUTES OF
CHARACTERISTIC
- 404

CAN
CHARACTERISTIC

NO

YES

MAP TO

HIS WORL
?

-~ 406

ASSOCIATE AVATAR
WITH MAPPED
CHARACTERISTIC

‘ L~ 407

APPLY CHARGES OR
REFUNDS TO
ACCOUNT

~— 408
Y z

UPDATE GLOBAL
STATE AS

APPROPRIATE

405
"~ MORE
CHARACTERISTICS

-
Lot

409

ADD OTHER
DEFAULT
CHARACTERISTICS

410

UPDATE
CHARACTERISTICS
BASED ON LOCAL
STATE

FIG. 4

US 8,621,368 B2

U.S. Patent Dec. 31, 2013

Sheet 5 of 29 US 8,621,368 B2
— 501
IDENTIFY ONE
CHARACTERISTIC
Y 502 503

/
£

[OCAL STATE ves
MODIFICATION TO USE LOCAL STATE
CHARACTERISTIC MODIFICATION
o

,,,,, 504 / 505

AGREEMENT
FOR LOCAL-TO-LOCAL

,,,,,,,,,,,,,,,,,,,,,, »| USEAGREED
CONVERSION

CONVERSION

APPLY WORLD
DEFAULT
CONVERSION

FIG. 5

U.S. Patent

Dec. 31, 2013 Sheet 6 of 29

US 8,621,368 B2

GLOBAL AVATAR STATE

{

ATTRIBUTE POSSESSION

|

I

AUTHENTICATION

— 603

VIRTUAL WORLD

REQUIRED ATTRIBUTE/POSSESSION

- 606

CONVERSION RULE

— 607

POSSESSION

L
[
u AUTHENTICATION

{

— 608

609

LOCAL AVATAR STATE

ATTRIBUTE MODIFICATION l

[
POSSESSION MODIFICATION l

t- 612

FIG. 6

U.S. Patent Dec. 31,2013 Sheet 7 of 29 US 8,621,368 B2

/

AVATAR INTERACTS
WITH WORLD

o 702

'
INTERACTION
RESULTS IN
CHANGE IN
CHARACTERISTIC

~— 703

/

Y /

UPDATE LOCAL
STATE OF AVATAR

.~ 706
- 704 /
, CONVERT LOCAL
CORRESPONDING _YES STATE CHANGE TO
CHANGE TO GLOBAL GLOBAL STATE
CHANGE
NO 705 707
Y / Y /
STORE LOCAL MODIFY GLOBAL
STATE STATE
MODIFICATION

FIG. 7

U.S. Patent Dec. 31,2013 Sheet 8 of 29 US 8,621,368 B2

DETERMINE
CHARACTERISTICS
OF AVATAR

e 801

h 4

DETERMINE
CORRESPONDING
CHARACTERISTICS

- 802

Y

PROPOSE
EXCHANGE OF
CHARACTERISTICS

- 803

USER No
ACCEPTS EXCHANGE 3 o A

- 805

REVOKE AVATAR'S
CHARACTERISTICS

-~ 807
\

FIG. 8

GIVE AVATAR NEW
CHARACTERISTICS

Y

CHARGE OR
REFUND ACCOUNT

U.S. Patent Dec. 31,2013 Sheet 9 of 29 US 8,621,368 B2

901 901

SERVICE PROVIDER SERVICE PROVIDER

NETWORK

USER USER USER

- 903 - 903 903

FIG. 9

U.S. Patent Dec. 31,2013 Sheet 10 of 29 US 8,621,368 B2

vvvvvv ~ 1004
AVATAR
—» ACCOUNT
-~ 1004
AVATAR
~-1002
1004
> ACCOUNT |— AVATAR
1002
INSTANCE
| 1006
—» SCENE
SERVICE
PROVIDER
INSTANCE
- 1008 -~ 1006
WORLD +—~ L $
1001 > Wo
\\\ ,,,,,,, 1003
L» SCENE }—»| INSTANCE
1008
1005
INSTANCE
¢ 1006
_» WORLD }—» SCENE
3 INSTANCE
AN N
1003 1005 1006

FIG. 10

U.S. Patent Dec. 31,2013 Sheet 11 of 29 US 8,621,368 B2

—» SERVICE PROVIDER

1102
> WORLD FIG. 11
1103
SECURABLE > SCENE
1101 1104
> ITEM —— ACCOUNT
110 1107
> ENTITY » PERSONA
1108 1108
S AVATAR

1109

U.S. Patent

Dec. 31, 2013

Sheet 12 of 29

i
PERMISSION RECORD

GATEKEEPER

S 1202

ENTITY PATTERN

ACTION PATTERN

\
\
A\

RN

-1204

SECURABLE PATTERN

~—1205

PERMISSION

OVERRIDABLE

FIG. 12

US 8,621,368 B2

U.S. Patent

Dec. 31, 2013

IDENTIFY ENTITY
ACTING ON
SECURABLE

l 1301

IDENTIFY
HIERARCHY OF
GATEKEEPERS

\

1302

A

SELECT NEXT
GATEKEEPER IN j=

Sheet 13 of 29

US 8,621,368 B2

FIG. 13

HIERARCHY

MATCHING
PERMISSION
RECORD

NO

DETERMINE AND
RECORD
PERMISSION

1306

YES
OVERRIDABLE

YES

OBJECTS
REMAINING IN
HIERARCHY

NO

USE RECORDED OR
DEFAULT
PERMISSION

1308

U.S. Patent Dec. 31,2013 Sheet 14 of 29 US 8,621,368 B2

PERMISSION RECORD 1

ENTITY: BOB
GATEKEEPER - ACTION: HIT
SECURABLE: TREE
PERMISSION: DENY
OVERRIDE: YES

1402

PERMISSION RECORD 2

ENTITY: ALL WIZARDS
gt ACTION: CAST SPELL
SECURABLE: ANYTHING
PERMISSION: ALLOW
OVERRIDE: NO

1403

PERMISSION RECORD 3

ENTITY: ANYONE
bt ACTION: HIT
SECURABLE: PLANT
PERMISSION: INHERIT
OVERRIDE: YES

1404

FIG. 14

U.S. Patent Dec. 31,2013 Sheet 15 of 29 US 8,621,368 B2
1501
SERVICE PROVIDER i NO MATCHING PERMISSION
T 1502
WORLD | = ALLOW, OVERRIDABLE
—1503
SCENE - INHERIT, OVERRIDABLE
1504
INSTANCE » DENY, NOT OVERRIDABLE
E 1505
:—~> ITEM = ALLOW, OVERRIDABLE

FIG. 15

U.S. Patent Dec. 31,2013 Sheet 16 of 29 US 8,621,368 B2

< > Q http://www.example.com/ @

1602

1603

O S SR S A
R I
FEE | EEE b

e
—

L’I604

\f1601
FIG. 16

U.S. Patent

Dec. 31, 2013

Sheet 17 of 29

IDENTIFY SCRIPT TO
EXECUTE

1701 i

DETERMINE PARENT
OBJECT OF SCRIPT

1702 i

ENABLE SCRIPT TO
MODIFY PARENT
OBJECT

1703 l

RECEIVE MESSAGE
FOR EXTERNAL
SCRIPT

1704 l

DETERMINE
AUTHORIZATION TO
EXECUTE SCRIPT

1705 l

EXECUTE SCRIPT IN
MESSAGE

FIG. 17

US 8,621,368 B2

U.S. Patent Dec. 31,2013 Sheet 18 of 29 US 8,621,368 B2

1801

SERVICE PROVIDER SYSTEM

SERVICE PROVIDER
ENTRYPOINT

\
\
\

1802

INSTANCE HOST

DATABASE 1803

1804 —" INSTANCE HOST

1803
INSTANCE HOST
1803
ROOT SERVER NETWORK EXTERNAL DATA
1805 ' 1808

USER

FIG. 18

U.S. Patent

USER

SEND REQUEST TO
SERVICE PROVIDER
IDENTIFYING SCENE

\

BROWSER PLUGIN
DETECTS META TAG
AND RUNS VIRTUAL

WORLD CLIENT

1911

RECEIVE STANDARD
WEB CONTENT

\

1905

RECEIVE DIRECTION
TO ACCESS
INSTANCE HOST

'

CONTACT INSTANCE
HOST

1909

Dec. 31, 2013

i
|
|
|
|
~——

1901

_

SERVICE
PROVIDER
ENTRYPOINT

RECEIVE REQUEST
TO ACCESS SCENE

Sheet 19 of 29

VIRTUAL
WORLD CLIENT
REQUEST

1904 .

3\

SEND STANDARD
WEB CONTENT WITH
META TAGS AND
CUSTOMIZATIONS

YES

SELECT AND/OR
CREATE INSTANCE
HOST

REDIRECT CLIENT
TO INSTANCE HOST

\
\

~--1907

US 8,621,368 B2

FIG. 19

INSTANCE HOST

1910

ENABLE USER TO
INTERACT WITH
VIRTUAL WORLD
SCENE

U.S. Patent Dec. 31,2013 Sheet 20 of 29 US 8,621,368 B2

| CREATE INSTANCE
. OF SCENE

2001

) J
DISPLAY MULTIPLE

INSTANCES (E.G.
OVERLAID) FIG' 20

2002
\
ALLOW USERS TO

MANIPULATE
INSTANCE

A

RECEIVE
INSTRUCTION TO
CLEAN UP OBJECT

\

2004
.//Y\‘\\
_ISOBJECT ™ yes o™
AAAAAAAAAAAAA - IN ORIGINAL P END
POSITION? \

INO

DETERMINE PATH
FOR REPLACING
OBJECT

2007

\
MOVE OBJECT
ACCORDING TO
PATH (OR FADE OUT
ETC.)

\

2008

U.S. Patent

Dec. 31, 2013 Sheet 21 of 29

US 8,621,368 B2

Q http://www.example.com/

2105

FIG. 21

U.S. Patent Dec. 31,2013 Sheet 22 of 29 US 8,621,368 B2

¢ ” > ”Ql http://www.example.com/ ‘@l

VIRTUAL WORLD OBJECT CLOUD

2202

2204

L2205

L2201

FIG. 22

U.S. Patent Dec. 31,2013 Sheet 23 of 29 US 8,621,368 B2

IDENTIFY OBJECTS
IN REAL OR VIRTUAL
SPACE

AGGREGATE
OBJECTS INTO
GROUPS

SUMMARIZE
GROUPS INTO
GRAPHICAL
REPRESENTATION

ARRANGE
GRAPHICAL
REPRESENTATIONS

l 2304

DISPLAY GRAPHICAL
REPRESENTATION

\

2305

FIG. 23

U.S. Patent Dec. 31,2013 Sheet 24 of 29 US 8,621,368 B2

CENTRAL VIRTUAL WORLDS
2401 —_| PROCESSING UNIT <r1jl_‘>
MODULE
© ¢ 2406
2402 —, MEMORY
— b\ ACCOUNTS MODULE
~ 2407
MASS STORAGE ' 0
2403 | DEVICE
AUTHENTICATION
1/O DEVICES AND <}:> MODULE
2404~ | INTERFACES PN—| | | L 77 2408
MULTIMEDIA
2405 DEVICES

FIG. 24

U.S. Patent

Dec. 31, 2013 Sheet 25 of 29 US 8,621,368 B2
e 2500
14
2502 2504 - 2506 2508 -
'ROOT SERVICE V |
INSTANCE
SERVER PROVIDER iOSTC CLIENT
fComponent *Components *Services instances “User Interface |
Ebrary management using installed *Input/Output
Component Instances components
interfaces : management P
L2 COMPONENT
- SELECTION .
“2510
L2COMPONENT | o544
2512 INSTALL
L2 COMP}ONENT . / 2518
: 518 { INSTALL
; R — 2520
- 2D PAGE REQUES [
2D PAGE ‘ o Ul
| 2522 JU S TN
é { 3DPLUGHN }
; 3D PAGE REQUEST T T
- - 2524
L1 INTERFACE J
e 2530) 2526~
2528 T SELECT | 2532
~OPEN INSTANCE __
il 2834
DIRECT TO INSTANCE HOST | ot
P TNCTCTa ~ = D536
L1 INTERFACE 2538~ (WTATS CONFIRM_ /o
Y ‘ J.REQ. [RECEIVE
2539 L2 EVENT e G INPUT |
- PROCESSING ~2542 ¢ TT5E40
3 B (GENERATE 5
2544 - | scene | PATA L “pispiay
N 2546 9548'. SCEN\E o
i 72550

" Fig. 25

U.S. Patent Dec. 31,2013 Sheet 26 of 29 US 8,621,368 B2

2600
y/

2610

INSTANTIATING, IN ONE OR MORE COMPUTER MEMORIES, AN
INSTANCE OF A THREE-DIMENSIONAL SCENE DEFINED BY A
COLLECTION OF DOCUMENT OBJECTS, WHEREIN THE DOCUMENT
OBJECTS ARE ENCODED IN A MARKUP LANGUAGE AND DEFINE
RESPECTIVE THREE-DIMENSIONAL MODELED OBJECTS OR SPACES

/2620

Y

CONTROLLING CONTENTS OF THE COLLECTION OF DOCUMENT
OBIJECTS IN RESPONSE TO SIGNALS RECEIVED BY A PROCESSOR
FROM ONE OR MORE CLIENT DEVICES

v /—2630

RECORDING, IN THE ONE OR MORE COMPUTER MEMORIES, A
SEQUENCE OF THREE-DIMENSIONAL SCENE STATES BASED ON
RESPECTIVE STATES OF THE SCENE AT SUCCESSIVE TIMES OF A
TIME SEQUENCE, INCLUDING AT LEAST POSITION AND
ORIENTATION OF THREE-DIMENSIONAL OBJECTS MODELED IN THE
SCENE

2640

A 4

PROVIDING DATA REPRESENTING THE SEQUENCE OF THREE-
DIMENSIONAL SCENE STATES TO THE ONE OR MORE CLIENTS

Fig. 26

U.S. Patent Dec. 31,2013 Sheet 27 of 29 US 8,621,368 B2

2700
Y

2710

COMPRISING INSTANTIATING THE INSTANCE OF THE SCENE AT
LEAST IN PART BY INSTANTIATING EACH OF THE DOCUMENT
OBJECTS IN THE COLLECTION

v -2720

INSTANTIATING AT LEAST ONE OF THE DOCUMENT OBJECTS AT

~ LEAST IN PART BY CREATING, FROM A DOCUMENT TEMPLATE

~ RECEIVED BY THE PROCESSOR, A COPY OF THE AT LEAST ONE OF

 THE DOCUMENT OBJECTS IN THE COLLECTION OF DOCUMENT
OBJECTS

v 2730

 ORGANIZING THE COLLECTION OF DOCUMENT OBIECTS IN A
- HIERARCHICAL TREE BASED: ON DOCUMENT OBIECT PROPERTIES

. 2740

FORMATTING THE DATA INTO A FORMAT ENABLING A THREE-
DIMENSIONAL ANIMATED DISPLAY OF THE SCENE FOR A USER
INTERFACE OF THE ONE OR MORE CLIENTS.

, 2750

INTERPRETING THE DOCUMENT OBJECTS ACCORDING TO THE
MARKUP LANGUAGE SELECTED FROM THE GROUP CONSISTING
OF: A HYPERTEXT MARKUP LANGUAGE (HTML) OBJECT, AN
EXTENSIBLE HYPERTEXT MARKUP LANGUAGE (XHTML) OR

Fig. 27

U.S. Patent Dec. 31,2013 Sheet 28 of 29 US 8,621,368 B2

2800
/
2810

INSTALLING ONE OR MORE COMPONENTS IN THE ONE OR MORE
COMPUTER MEMORIES ADAPTED FOR SUPPORTING THE INSTANCE
OF THE SCENE, IN RESPONSE TO RECEIVING AN INSTRUCTION
FROM A SERVER

‘ 2820

CONTROLLING THE COLLECTION OF DOCUMENT OBJECTS AT LEAST
IN PART BY DETECTING, USING THE ONE OR MORE COMPONENTS
EXECUTING BY THE PROCESSOR, ONES OF THE SIGNALS
SIGNIFYING EVENTS CORRESPONDING TO ONES OF THE
DOCUMENT OBJECTS

v 280

GENERATING AN INFORMATION SIGNAL IN RESPONSE TO: THE
DETECTING THE ONES OF THE SIGNALS SIGNIFYING EVENTS, AND
TRANSMITTING THE INFORMATION SIGNAL TO THE SERVER

. 2840

COMMUNICATING WITH THE SERVER USING THE ONE OF MORE

COMPONENTS EXECUTING BY THE PROCESSOR TO DETERMINE
RESPECTIVE OUTCOMES OF THE EVENTS

] 2850

UPDATING STATES OF ONE OR MORE OF THE DOCUMENT OBJECTS
IN THE COLLECTION, ACCORDING TO THE RESPECTIVE OUTCOMES |

Fig. 28

U.S. Patent

Dec. 31, 2013

2900
\\

N
4

Sheet 29 of 29

2912

US 8,621,368 B2

2904

2902

/

COMPONENT FOR INSTANTIATING AN

INSTANCE OF A THREE-DIMENSIONAL

SCENE DEFINED BY A COLLECTION OF

- DOCUMENT OBJECTS, WHEREIN THE

- DOCUMENT OBJECTS ARE ENCODED: IN: A

: MARKUP LANGUAGE AND DEFINE

RESPECTIVE THREE-DIMENSIONAL
MODELED: OBIECTS OR SPACES

COMPONENT FOR CONTROLLING.
CONTENTS OF THE COLEECTION OF
DOCUMENT OBJECTS IN: RESPONSE TO
SIGNALS FROM ONE OR MORE CLIENT

COMPONENT FOR RECORDING. A
SEQUENCE OF THREE-DIMENSIONAL
SCENE STATES BASED ON RESPECTIVE
STATES OF THE SCENE AT SUCCESSIVE
TIMES OF A TIME SEQUENCE, INCLUDING.
AT LEAST POSITION AND: ORIENTATION
OF THREE-DIMENSIONAL OBJECTS,

MODELED:IN: THE SCENE;
ANDPOPULATING AN ELECTRONIC DATA.
STRUCTURE IN. A COMPUTER MEMORY
RELATING EACH OF DIFFERENT
COMBINATIONS OF THE TARGETED:
ATTRIBUTES TO: A FORECASTED TOTAL
NUMBER OF AVAILABLE IMPRESSIONS. IN
THE TIME PERIOD; BY AGGREGATING THE
FORECASTED: NUMBER OF AVAILABLE
IMPRESSIONS: PER ATTRIBUTE PER
PROGRAM: OVER THE PROGRAM
COLLECTION

- 2906

DEVICES

COMPONENT FOR PROVIDE DATA
REPRESENTING THE SEQUENCE OF THREE-
DIMENSIONAL SCENE STATES TO: THE ONE

OR MORE CLIENTS

2910

PROCESSOR

- 2914
NETWORK

- 2916

MEMORY

Fig. 29

INTERFACE

US 8,621,368 B2

1
SYSTEMS AND METHODS OF VIRTUAL
WORLD INTERACTION

CROSS-REFERENCE TO RELATED
APPLICATIONS

This specification claims priority as a non-provisional
applicationto U.S. Prov. Pat. App. No. 61/524,956, filed Aug.
18, 2011. The aforementioned application is hereby incorpo-
rated by reference in its entireties as if set forth herein.

BACKGROUND

Information, graphical and other content on the Internet
today is primarily presented in two-dimensional form, such as
web pages (the “Flat Web”). Efforts have been made to intro-
duce three-dimensional worlds to existing technology, but
those have treated the three dimensional environment as a
game or limited application utility, such as a three dimen-
sional rending of a car based on user inputs made to a car
manufacturer’s website. Furthermore, extent three-dimen-
sional world systems are monolithic and typically controlled,
operated, and managed by a single entity and limited to a
scope far smaller than the Flat Web. Accordingly, develop-
ment of a widely scoped three dimensional information sys-
tem, whether denominated as a virtual world system or the
“3D Web”, has been precluded by the narrow scope of those
systems, the often idiosyncratic policies and interfaces imple-
mented by the managers of those systems, and the lack of
innovative technological solutions necessary to overcome
extent technological barriers to implementation.

SUMMARY

Accordingly, disclosed herein are systems and methods of
virtual world interaction, operation, implementation, instan-
tiation, creation, and other functions related to virtual worlds
(note that where the term “virtual world” is used herein, it is
to be understood as referring to virtual world systems, virtual
environments reflecting real, simulated, fantasy, or other
structures, and includes information systems that utilize inter-
action within a 3D environment). Various embodiments
facilitate interoperation between and within virtual worlds,
and may provide consistent structures for operating virtual
worlds. The disclosed embodiments may further enable indi-
viduals to build new virtual worlds within a framework, and
allow third party users to better interact with those worlds.

An embodiment is a method of communicating user data
between virtual worlds systems. The method is performed on
a virtual worlds server. The virtual worlds server, which
includes one or more processors, receives a request for a
transfer of an avatar from an external virtual worlds server.
The virtual worlds server determines authorization rights of
the avatar to access the virtual worlds server. The virtual
worlds server completes a transfer protocol with the external
virtual worlds server. The virtual worlds server converts char-
acteristics associated with the avatar based on one or more
conversion rules associated with the virtual worlds server.
The virtual worlds server engages the avatar for interaction
with one or more worlds on the virtual worlds server.

Optionally in any of the aforementioned embodiments,
completing the transfer protocol comprises performing a
cryptographically secure transfer configured to inhibit the
avatar from appearing in multiple virtual worlds simulta-
neously.

20

25

30

35

40

45

50

55

60

65

2

Optionally in any of the aforementioned embodiments,
converting the characteristics comprises matching the char-
acteristics with comparable characteristics permitted by the
virtual worlds server.

Optionally in any of the aforementioned embodiments,
converting the characteristics further comprises determining
a difference in value between the characteristics and the com-
parable characteristics, and providing a credit accounting for
the difference in value.

Optionally in any of the aforementioned embodiments,
matching the characteristics comprises analyzing one or more
attributes of the characteristics and one or more attributes of
the comparable characteristics.

Optionally in any of the aforementioned embodiments,
matching the characteristics comprises processing one or
more local-to-local conversion agreement rules associated
with the virtual worlds server and the external virtual worlds
server.

Optionally in any of the aforementioned embodiments, the
external virtual worlds server is housed on the same comput-
ing device as the virtual worlds server.

Optionally in any of the aforementioned embodiments,
converting the characteristics comprises modifying a global
avatar state associated with the avatar to reflect the conversion
of the characteristics.

Optionally in any of the aforementioned embodiments,
converting the characteristics comprises storing a local avatar
state associated with the avatar to reflect the conversion of the
characteristics. A global avatar state associated with the ava-
tar need not be modified.

Optionally in any of the aforementioned embodiments,
converting the characteristics comprises modifying one or
more of the characteristics based on a previously stored local
avatar state associated with the avatar. Effects of previous
activities of the avatar on the virtual worlds server may be
restored to the avatar.

An embodiment is a computer system configured to com-
municate user data between virtual worlds systems. The com-
puter system includes computer-readable storage having
stored thereon a plurality of modules implemented as execut-
able instructions. The computer system includes one or more
computer processors configured to execute the plurality of
modules. The computer system includes a transfer receipt
module configured to receive a request for a transfer of an
avatar from an external virtual worlds server. The computer
system includes an authorization module configured to deter-
mine authorization rights of the avatar to access the virtual
worlds server. The computer system includes a transfer mod-
ule configured to complete a transfer protocol with the exter-
nal virtual worlds server. The computer system includes a
conversion module configured to convert characteristics
associated with the avatar based on one or more conversion
rules associated with the virtual worlds server. The computer
system includes an interaction module configured to engage
the avatar for interaction with one or more worlds on the
virtual worlds server.

An embodiment is a method of determining permissibility
of actions within a virtual world. The service provider iden-
tifies, by a service provider comprising computing hardware,
an attempt by a virtual world entity to take an action upon an
object within a virtual world. The service provider selects one
or more gatekeeper objects having permission rules config-
ured to determine permissibility of the action to be taken by
the virtual world entity on the object. The permission rules
includes one or more of an avatar matching component, an
action matching component, and an object matching compo-
nent. The service provider iterates through one or more of the

US 8,621,368 B2

3

gatekeeper objects to identify one or more applicable permis-
sion rules based on the virtual world entity, the action to be
taken, and the object to be acted upon. The service provider
determines whether the action is permitted based on the one
or more applicable permission rules. The service provider
automatically permits or disallows the action based on the
determination of whether the action is permitted.

Optionally in any of the aforementioned embodiments, the
gatekeeper objects comprise a service provider, a virtual
world, and a scene within the virtual world.

Optionally in any of the aforementioned embodiments, the
gatekeeper objects include the object being acted upon.

Optionally in any of the aforementioned embodiments, the
permission rules further include an indication of whether to
inherit permissibility from a parent gatekeeper object.

Optionally in any of the aforementioned embodiments, the
permission rules further indicate whether each permission
rule may be overridden by a subsequent permission rule.

Optionally in any of the aforementioned embodiments,
identifying the attempt comprises receiving, from a user com-
puter, a request to perform the action on the object.

Optionally in any of the aforementioned embodiments, the
request identifies a script to be executed. The script is asso-
ciated with the object.

Optionally in any of the aforementioned embodiments, the
request identifies a modification to an element of a document
structure associated with the object.

An embodiment is a computer system configured to deter-
mine permissibility of actions within a virtual world. The
computer system includes computer-readable storage having
stored thereon a plurality of modules implemented as execut-
able instructions. The computer system includes one or more
computer processors configured to execute the plurality of
modules. The computer system includes an action identifica-
tion module configured to identify an attempt by a virtual
world entity to take an action upon an object within a virtual
world. The computer system includes a gatekeeper selection
module configured to select one or more gatekeeper objects
having permission rules configured to determine permissibil-
ity of the action to be taken by the virtual world entity on the
object. The permission rules includes one or more of an avatar
matching component, an action matching component, and an
object matching component. The computer system includes a
rule application module configured to iterate through one or
more of the gatekeeper objects to identify one or more appli-
cable permission rules based on the virtual world entity, the
action to be taken, and the object to be acted upon. The
computer system includes a permission determination mod-
ule configured to determine whether the action is permitted
based on the one or more applicable permission rules. The
computer system includes a rule execution module config-
ured to automatically permit or disallow the action based on
the determination of whether the action is permitted.

Anembodiment is a method of operating executable scripts
on a virtual worlds system to enable automation of actions on
avirtual worlds system. The virtual worlds system maintains,
on computer-readable media, a data representation of a vir-
tual space. The data representation includes a hierarchical
representation of objects within the virtual space. The hierar-
chical representation includes an executable script associated
with a first object within the hierarchical representation. The
virtual worlds system executes the executable script on one or
more computer processors in communication with the com-
puter-readable media. The virtual worlds system enables the
executable script to modify a second object within the hier-
archical representation, based on a determination that the
second object is the same as or a descendant of the first object

20

25

30

35

40

45

50

55

60

65

4

with which the executable script is associated. The virtual
worlds system prevents the executable script from modifying
a third object within the hierarchical representation, based on
a determination that the third object is not the same as or a
descendant of the first object with which the executable script
is associated.

Optionally in any of the aforementioned embodiments, the
hierarchical representation of objects is associated with a
document object model.

Optionally in any of the aforementioned embodiments, the
script is maintained as a subelement of the first object in the
hierarchical representation.

Optionally in any of the aforementioned embodiments, the
method also includes enabling the executable script to invoke
a second executable script associated with the third object.
The executable script may indirectly modify the third object
through invocation of the second executable script.

Optionally in any of the aforementioned embodiments, the
executable script invokes the second executable script by
executing a function naming an action identifier associated
with the second executable script.

An embodiment is a computer system configured to oper-
ate executable scripts on a virtual worlds system to enable
automation of actions on the virtual worlds system. The com-
puter system includes computer-readable storage having
stored thereon a plurality of modules implemented as execut-
able instructions. The computer system includes one or more
computer processors configured to execute the plurality of
modules. The computer system includes stored computer data
comprising a data representation of a virtual space. The data
representation includes a hierarchical representation of
objects within the virtual space. The hierarchical representa-
tion includes an executable script associated with a first object
within the hierarchical representation. The computer system
includes a script execution module configured to execute the
executable script on one or more computer processors in
communication with the computer-readable media. The com-
puter system includes an object modification module config-
ured to enable the executable script to modify a second object
within the hierarchical representation, based on a determina-
tion that the second object is the same as or a descendant of the
first object with which the executable script is associated. The
object modification module is further configured to prevent
the executable script from modifying a third object within the
hierarchical representation, based on a determination that the
third object is not the same as or a descendant of the first
object with which the executable script is associated.

An embodiment is a method of representing a three-dimen-
sional space via a computer network. A virtual worlds service
provider configured to operate a three-dimensional virtual
world receives a request for access to the three-dimensional
virtual world. The virtual worlds service provider determines
whether the request should be served with three-dimensional
virtual world data or a two-dimensional representation of the
three-dimensional virtual world data. The determination is
based on the content of the request for access. The virtual
worlds service provider, in response to determining that the
request should be served with three-dimensional virtual
world data, transmits the three dimensional virtual world
data. The virtual worlds service provider, in response to deter-
mining that the request should be served with a two-dimen-
sional representation of the three-dimensional virtual world
data, generates a two-dimensional representation based on
the existing state of the three-dimensional virtual world, and
transmits user interface data including the two-dimensional
representation. The user interface data includes executable

US 8,621,368 B2

5

code configured to enable a user to interact with the three-
dimensional virtual world using a two-dimensional interface.

Optionally in any of the aforementioned embodiments,
determining whether the request should be served with three-
dimensional virtual world data or a two-dimensional repre-
sentation of the three-dimensional virtual world data com-
prises determining a protocol associated with the request.

Optionally in any of the aforementioned embodiments,
determining whether the request should be served with three-
dimensional virtual world data or a two-dimensional repre-
sentation of the three-dimensional virtual world data com-
prises determining a user agent associated with the request.

Optionally in any of the aforementioned embodiments,
generating the two-dimensional representation comprises
identifying a vantage point within the three-dimensional vir-
tual world and transmitting a two-dimensional rendering of
the virtual world based on the identified vantage point.

Optionally in any of the aforementioned embodiments, the
vantage point is identified based on an identifier in the
request.

Optionally in any of the aforementioned embodiments, the
executable code is configured to present a chat interface
enabling the user to send and receive messages within the
three-dimensional virtual world.

Optionally in any of the aforementioned embodiments, the
method also includes inserting an avatar representation into
the three-dimensional virtual world in response to determin-
ing that the request should be served with a two-dimensional
representation. The avatar representation is configured to
indicate that the user associated with the avatar is accessing
the two-dimensional representation.

Optionally in any of the aforementioned embodiments, the
user interface data is configured to be indexable by a search
engine.

An embodiment is a computer system configured to repre-
sent a three-dimensional space via a computer network. The
computer system includes computer-readable storage having
stored thereon a plurality of modules implemented as execut-
able instructions. The computer system includes one or more
computer processors configured to execute the plurality of
modules. The computer system includes a request processing
module configured to receive a request for access to the three-
dimensional virtual world. The computer system includes a
dimensionality assessment module configured to determine
whether the request should be served with three-dimensional
virtual world data or a two-dimensional representation of the
three-dimensional virtual world data. The determination is
based on the content of the request for access. The computer
system includes a three-dimensional content module config-
ured to respond to a determination that the request should be
served with three-dimensional virtual world data, by trans-
mitting the three dimensional virtual world data. The com-
puter system includes a two-dimensional content module
configured to respond to a determination that the request
should be served with a two-dimensional representation of
the three-dimensional virtual world data, by generating a
two-dimensional representation based on the existing state of
the three-dimensional virtual world, and transmitting user
interface data including the two-dimensional representation.
The user interface data includes executable code configured
to enable a user to interact with the three-dimensional virtual
world using a two-dimensional interface.

An embodiment is a method of arranging objects within a
three-dimensional virtual space. The method is performed on
a virtual worlds service provider. The virtual worlds service
provider maintains, on a service provider comprising one or
more computer processors, an instance of a virtual world

20

25

30

35

40

45

50

55

60

65

6

scene comprising a plurality of objects in a first spatial
arrangement. The virtual worlds service provider identifies a
first object of the plurality of objects. The first object has a
first spatial position. The virtual worlds service provider com-
pares the first spatial position of the first object to an original
spatial position associated with the first object. The virtual
worlds service provider computes a transition path for replac-
ing the first object from the first spatial position to the original
spatial position, based on the comparison of the first spatial
position of the first object and the original spatial position.
The virtual worlds service provider automatically transitions
the first object based on the computed transition path.

Optionally in any of the aforementioned embodiments,
automatically transitioning the first object comprises causing
the first object to autonomously transport along the computed
transition path.

Optionally in any of the aforementioned embodiments,
automatically transitioning the first object comprises intro-
ducing a non-player character to transition the first object
based on the computed transition path.

Optionally in any of the aforementioned embodiments, the
non-player character is configurable by an operator of the
three-dimensional virtual space.

Optionally in any of the aforementioned embodiments, the
original spatial position is associated with the virtual world
scene.

Optionally in any of the aforementioned embodiments,
automatically transitioning the first object comprises deter-
mining a speed for transitioning the first object and transi-
tioning the first object based on the determined speed.

Optionally in any of the aforementioned embodiments, the
speed is determined at least in part based on the number of
avatars present in the instance of the virtual world scene.

An embodiment is a computer system configured to
arrange objects within a three-dimensional virtual space. The
computer system includes computer-readable storage having
stored thereon a plurality of modules implemented as execut-
able instructions. The computer system includes one or more
computer processors configured to execute the plurality of
modules. The computer system includes stored data repre-
senting an instance of a virtual world scene comprising a
plurality of objects in a first spatial arrangement. The com-
puter system includes an object identification module config-
ured to identify a first object of the plurality of objects. The
first object has a first spatial position. The computer system
includes a position comparison module configured to com-
pare the first spatial position of the first object to an original
spatial position associated with the first object. The computer
system includes a path computation module configured to
compute a transition path for replacing the first object from
the first spatial position to the original spatial position, based
on the comparison of the first spatial position of the first
object and the original spatial position. The computer system
includes a path execution module configured to automatically
transition the first object based on the computed transition
path.

An embodiment is a method of interoperating between
two-dimensional and three-dimensional representations of a
virtual world. The system receives, from a client computer, a
request for access to a virtual world. The request indicates a
location in the virtual world to be accessed. The system deter-
mines that a two-dimensional representation of the virtual
world should be served to the client computer, based on
content of the received request for access. The system trans-
mits, to the client computer, two-dimensional content repre-
senting the virtual world. The two-dimensional content com-
prises an indicator configured to cause the client computer to

US 8,621,368 B2

7

invoke a virtual world browser configured to process three-
dimensional content. The indicator is further configured to
cause the virtual world browser to access a location in the
virtual world corresponding to the location in the virtual
world indicated in the received request for access.

Optionally in any of the aforementioned embodiments, the
indicator comprises a tag within HTML content transmitted
to the client computer.

Optionally in any of the aforementioned embodiments, the
tag includes a URL identifying a protocol associated with the
virtual world browser.

Optionally in any of the aforementioned embodiments, the
indicator is configured to cause the virtual world browser to
display the three-dimensional content in a flippable interface
enabling a user of the client computer to switch between the
two-dimensional representation and the three-dimensional
content.

Optionally in any of the aforementioned embodiments,
determining that the two-dimensional representation of the
virtual world should be served comprises determining a user
agent associated with the request for access.

Optionally in any of the aforementioned embodiments,
determining that the two-dimensional representation of the
virtual world should be served comprises determining a pro-
tocol associated with the request for access.

An embodiment is a computer system configured to inter-
operate between two-dimensional and three-dimensional
representations of a virtual world. The computer system
includes computer-readable storage having stored thereon a
plurality of modules implemented as executable instructions.
The computer system includes one or more computer proces-
sors configured to execute the plurality of modules. The com-
puter system includes a request processing module config-
ured to receive, from a client computer, a request for access to
a virtual world. The request indicates a location in the virtual
world to be accessed. The computer system includes a dimen-
sionality assessment module configured to determine that a
two-dimensional representation of the virtual world should
be served to the client computer, based on content of the
received request for access. The computer system includes a
two-dimensional content module configured to transmit, to
the client computer, two-dimensional content representing
the virtual world. The two-dimensional content comprises an
indicator configured to cause the client computer to invoke a
virtual world browser configured to process three-dimen-
sional content. The indicator is further configured to cause the
virtual world browser to access a location in the virtual world
corresponding to the location in the virtual world indicated in
the received request for access.

An embodiment is a method, which may be performed by
a computer system for example. The system instantiates, in
one or more computer memories, an instance of a three-
dimensional scene defined by a collection of document
objects. The document objects are encoded in a descriptive
language and define respective three dimensional modeled
objects or spaces. The system controls contents of the collec-
tion of document objects in response to signals received by a
processor from one or more client devices. The system
records, in the one or more computer memories, a sequence of
three-dimensional scene states based on respective states of
the scene at successive times of a time sequence, including at
least position and orientation of three-dimensional objects
modeled in the scene. The system provides data representing
the sequence of three-dimensional scene states to the one or
more clients.

20

25

30

35

40

45

50

55

60

65

8

Optionally in any of the aforementioned embodiments, the
method also includes instantiating the instance of the scene at
least in part by instantiating ones of the document objects in
the collection.

Optionally in any of the aforementioned embodiments, the
method also includes instantiating at least one of the docu-
ment objects at least in part by creating, from a document
template received by the processor, a copy of the at least one
of'the document objects in the collection of document objects.

Optionally in any of the aforementioned embodiments, the
method also includes organizing the collection of document
objects in a hierarchical tree based on document object prop-
erties.

Optionally in any of the aforementioned embodiments, the
method also includes installing one or more components in
the one or more computer memories adapted for supporting
the instance of the scene, in response to receiving an instruc-
tion from a server.

Optionally in any of the aforementioned embodiments, the
method also includes controlling the collection of document
objects at least in part by detecting, using the one or more
components executing by the processor, ones of the signals
signifying events corresponding to ones of the document
objects.

Optionally in any of the aforementioned embodiments, the
method also includes generating an information signal in
response to the detecting the ones of the signals signifying
events, and transmitting the information signal to the server.

Optionally in any of the aforementioned embodiments, the
method also includes communicating with the server using
the one of more components executing by the processor to
determine respective outcomes of the events.

Optionally in any of the aforementioned embodiments, the
method also includes updating states of one or more of the
document objects in the collection, according to the respec-
tive outcomes.

Optionally in any of the aforementioned embodiments, the
method also includes formatting the data into a format
enabling a three-dimensional animated display of the scene
for a user interface of the one or more clients.

Optionally in any of the aforementioned embodiments, the
method also includes interpreting the document objects
according to the markup language selected from the group
consisting of: a Hypertext Markup Language (HTML) object,
an Extensible Hypertext Markup Language (XHTML) or
Extensible Markup Language (XML).

An embodiment is an apparatus comprising a processor
coupled to a memory. The memory holds instructions that
when executed by the processor, cause the apparatus to per-
form operations. The apparatus instantiates an instance of a
three-dimensional scene defined by a collection of document
objects. The document objects are encoded in a markup lan-
guage and define respective three-dimensional modeled
objects or spaces. The apparatus controls contents of the
collection of document objects in response to signals from
one or more client devices. The apparatus records a sequence
of three-dimensional scene states based on respective states
of'the scene at successive times of a time sequence, including
at least position and orientation of three-dimensional objects
modeled in the scene. The apparatus provides data represent-
ing the sequence of three-dimensional scene states to the one
or more clients.

Optionally in any of the aforementioned embodiments, the
memory holds further instructions for instantiating the
instance of the scene at least in part by instantiating ones of
the document objects in the collection.

US 8,621,368 B2

9

Optionally in any of the aforementioned embodiments, the
memory holds further instructions for instantiating at least
one of the document objects at least in part by creating, from
a document template received by the processor, a copy of the
at least one of the document objects in the collection of
document objects.

Optionally in any of the aforementioned embodiments, the
memory holds further instructions for organizing the collec-
tion of document objects in a hierarchical tree based on docu-
ment object properties.

Optionally in any of the aforementioned embodiments, the
memory holds further instructions for installing one or more
components in the one or more computer memories adapted
for supporting the instance of the scene, in response to receiv-
ing an instruction from a server.

Optionally in any of the aforementioned embodiments, the
memory holds further instructions for controlling the collec-
tion of document objects at least in part by detecting, using
the one or more components executing by the processor, ones
of the signals signifying events corresponding to ones of the
document objects.

Optionally in any of the aforementioned embodiments, the
memory holds further instructions for generating an informa-
tion signal in response to the detecting the ones of the signals
signifying events, and transmitting the information signal to
the server.

Optionally in any of the aforementioned embodiments, the
memory holds further instructions for communicating with
the server using the one or more components executing by the
processor to determine respective outcomes of the events.

Optionally in any of the aforementioned embodiments, the
memory holds further instructions for updating states of one
or more of the document objects in the collection, according
to the respective outcomes.

Optionally in any of the aforementioned embodiments, the
memory holds further instructions for formatting the data into
a format enabling a three-dimensional animated display of
the scene for a user interface of the one or more clients.

Optionally in any of the aforementioned embodiments, the
memory holds further instructions for interpreting the docu-
ment objects according to the markup language selected from
the group consisting of: a Hypertext Markup Language
(HTML) object, an Extensible Hypertext Markup Language
(XHTML) or Extensible Markup Language (XML).

An embodiment is a system. The system includes one or
more objects defined according to a protocol for a virtual
environment. The system includes one or more scenes within
the virtual environment. The system includes one or more
virtual environments, a subset of which are defined as part of
at least one of the virtual environments not in the subset. The
system includes a database containing information defining
permissions each of the objects, scenes, and virtual environ-
ments is permitted to grant to, or exercise against, one or more
of the other objects, scenes, or virtual environments.

Optionally in any of the aforementioned embodiments, the
system also includes means for realizing the permissions data
in an instance of the one or more scenes by limiting the ability
of objects, scenes, and virtual environments to interact to
interactions compatible with the extent permissions. Virtual
environments are permitted to require, permit, preclude, or a
combination thereof, permissions of scenes below it in a
hierarchy, and scenes are permitted to require, permit, pre-
clude, or a combination thereof, permissions of objects below
it in a hierarchy.

Optionally in any of the aforementioned embodiments,
database comprises data encoded into objects themselves and
not centrally stored.

20

25

30

35

40

45

50

55

60

65

10

An embodiment is a computer system. The system includes
an object or layer contained within a virtual environment
holding templates for generation of one or more other objects
or layers within a virtual environment. The system includes
means for generating said one or more objects or layers. The
system includes means for interacting with said one or more
objects or layers by one or more users resulting in at least one
alteration to the said objects or layers. The system includes
means for determining, by reference to permissions data,
whether one or more such alterations should be made persis-
tent with regard to one or more other objects, other layers, or
users.

Optionally in any of the aforementioned embodiments, the
system also includes means for recording of the extent state of
the objects or layers.

Optionally in any of the aforementioned embodiments, the
system also includes means for determining whether a object,
layer or user making changes in the recorded state had per-
mission to change the instantiation of such object or layer
with regard to a second user, object or layer. The second user,
object, or layer attempts to instantiate an instance of the
object or layer based stored on said template but also stored in
said recorded state.

Optionally in any of the aforementioned embodiments, the
system also includes means for instantiating the template
version where such permissions are insufficient, or the
recorded version when such permissions are sufficient.

Optionally in any of the aforementioned embodiments,
persistence of the alteration may be time-limited or termi-
nated by an event.

An embodiment is a system. The system includes com-
puter-readable storage having stored thereon a plurality of
modules implemented as executable instructions. The system
includes one or more computer processors configured to
execute the plurality of modules. The computer-readable stor-
age has stored thereon data representing one or more virtual
environments, configured to enable one of the virtual envi-
ronments to be part of another virtual environment. [t also has
data representing one or more objects for use within the
virtual environments. It also has data representing one or
more scenes within the virtual environments. The system
includes a database, including information indicating a grant
of permissions from one of grantor objects, scenes, and vir-
tual environments to one or more of actor objects, scenes, or
virtual environments. The system includes an enforcement
module configured to enforce the grant of permissions by
limiting interactions performed by the actor objects, scenes,
and virtual environments to interactions compatible with the
granted permissions. The grant of permissions is configured
to enable virtual environments to require, permit, preclude, or
a combination thereof, permissions of scenes below it in a
hierarchy. The grant of permissions is further configured to
enable scenes to require, permit, preclude, or a combination
thereof, permissions of objects below it in a hierarchy.

An embodiment is a system. The system includes com-
puter-readable storage having stored thereon a plurality of
modules implemented as executable instructions. The system
includes one or more computer processors configured to
execute the plurality of modules. The system includes a com-
puter storage medium having stored thereon data represent-
ing an object or layer within a virtual environment that stores
templates for generation of one or more other objects or layers
within a virtual environment. The system includes a genera-
tion module configured to generate the one or more objects or
layers. The system includes an interaction module configured
to enable an altering user to interact with said one or more
objects or layers resulting in at least one alteration to the one

US 8,621,368 B2

11

or more objects or layers. The system includes a determina-
tion module configured to determine, by reference to permis-
sions data, whether one or more such alterations should be
made persistent with regard to one or more other objects,
other layers, or users. The system includes a recordation
module configured to record of a state of such objects or
layers. The system includes an instantiation module config-
ured to determine, upon a second user, object, or layer
attempting to instatiate an instance of an object or layer based
on one of the templates and on recorded state, whether the
altering user had permissions to act in a manner that changes
the instantiation of such object or layer with regard to said
second user. The instantiation module is configured to instan-
tiate the template version where such permissions were insuf-
ficient, or the recorded version when such permissions were
sufficient.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram of network components con-
nected within the VWW, as used in an embodiment.

FIG. 2 is a block diagram of network components of a
virtual worlds system, as used in an embodiment.

FIG. 3 is a flowchart of a process of enabling an avatar to
cross between two locations (e.

FIG. 4 is a flowchart of a process of converting items
between worlds or other locations, as used in one embodi-
ment.

FIG. 5 is a flowchart of a process of mapping characteris-
tics from global state to local state, as used in one embodi-
ment.

FIG. 6 is a block diagram of example data structures of
global avatar states and local world data, as used in an
embodiment.

FIG. 7 is a flowchart of a process of changing an avatar’s
characteristics while the avatar interacts with a virtual world,
as used in an embodiment.

FIG. 8 is a flowchart of a process of modifying character-
istics upon entering a world requiring permanent conversion
of characteristics, as used in an embodiment.

FIG. 9 is a block diagram of a computer network system
connecting virtual world service providers and users, as used
in an embodiment.

FIG. 10 is a hierarchical diagram of an example arrange-
ment of virtual worlds data on a service provider, as used in an
embodiment.

FIG. 11 is a hierarchical diagram of an example arrange-
ment of objects within a virtual world, as used in an embodi-
ment.

FIG. 12 is a block diagram of a data structure representing
permissions, as used in an embodiment.

FIG. 13 is a flowchart of a process of resolving permission
for an entity to take an action, as used in an embodiment.

FIG. 14 is a block diagram of an example gatekeeper hav-
ing associated permissions records, as used in an embodi-
ment.

FIG. 15 is a diagram of an example of permission resolu-
tion across multiple gatekeeper objects, as used in an embodi-
ment.

FIG. 16 is an example of a layout of an instance of a scene
in a virtual world, as used in an embodiment.

FIG. 17 is a flowchart of a process of executing scripts, as
used in an embodiment.

FIG. 18 is a block diagram of a service provider system and
related computer systems, as used in an embodiment.

FIG. 19 is a flowchart of a process of serving content based
on namespaces, as used in an embodiment.

20

25

30

35

40

45

50

55

60

65

12

FIG. 20 is a flowchart of a process of cleaning up an
instance of a scene.

FIG. 21 is a sample user interface depicting an instance of
a scene to be cleaned up, as used in an embodiment.

FIG. 22 is asample user interface displaying a virtual world
object cloud, as used in an embodiment.

FIG. 23 is a flowchart of a process of constructing an object
cloud, as used in an embodiment.

FIG. 24 is a block diagram of a computing system as used
in an embodiment.

FIG. 25 illustrates an example of a call flow, implementing
a multilayer component and interface system.

FIGS. 26-28 are flowcharts of various processes performed
in an embodiment.

FIG. 29 provides an exemplary apparatus 2900 that may be
configured as computer server, client device, or combination
of client and server, for instantiating a three-dimensional
scene.

DETAILED DESCRIPTION OF SPECIFIC
EMBODIMENTS

An aspect of the present disclosure concerns improve-
ments and modifications to client applications and devices for
participating in a hosted virtual reality process. The existing
World Wide Web (also referred to as “web”, “flat web”, or
“www” herein) is designed to display information and inter-
act with users in two dimensions. Existing web clients can
display quasi- three dimensional objects (such as graphics
that appear rendered in 3D, or even objects such as images
that actually display in three dimensions when viewed with
appropriate hardware, such as red/blue glasses, polarized
glasses, LCD shutter glasses or similar technology), but the
user cannot navigate through a three dimensional array of
data, objects, and other users. Disclosed herein are details
regarding a client application that may be an end-user execut-
able (or rendered display delivery mechanism such as a deliv-
erable program), and that may, with regard to a three dimen-
sional information and interaction space, be analogous to web
browsers such as Internet Explorer (™M) or Google Chrome
(™) with regard to two dimensional data and interaction. It
may be implemented as a browser plugin, an extension to
existing software, a standalone application, web application
(through Javascript (™M) or Flash (™), for example), mobile
device application, and so on (collectively sometimes refer-
enced herein as “new client”).

Just as the existing HTTP protocol infrastructure includes
the ability to engage in complex interlinking arrangements,
the new client discussed herein enables the user to navigate a
complex web of three dimensional spaces. This interlinked
system of three dimensional spaces may be referred to herein
as the “Virtual World Web,” or “VWW.”

FIG. 1 is a block diagram of network components con-
nected within the VWW, as used in an embodiment. In various
embodiments, additional blocks may be included, some
blocks may be removed, and/or blocks may be connected or
arranged differently from what is shown. The embodiment of
FIG. 1 includes a service provider such as world server 10, a
root server which may include database server 20, client
computer 30, client phone or other portable device 40, client
computer 50, network 60 (such as the Internet, wide area
network, and/or LAN), software server 70, third party service
provider such as worlds server 80, and/or third party database
server 90. Any of the aforementioned servers may be com-
bined into a single computing device and/or housed on sepa-
rate computing devices, and additional computing devices
may similarly be included. Similarly, any one or more func-

US 8,621,368 B2

13

tions may be performed by a virtual machine, or by use of
distributed computing, sharing tasks between a plurality of
machines. Any of the foregoing may also be implemented as
a peer to peer solution, where certain tasks (for example,
calculations related to rendering of objects) may be per-
formed on other machines (such as by utilizing the new client
software running on one or more machines to perform ren-
dering calculations requested by another of the machines
running the new client software or to distribute copies of the
new client software).

The physical layout of the system may include several
elements. In an embodiment, end user computer 30 makes a
request over a wide area network 60 to a software server 70 to
download the client software. The software server 70
responds to the request by transmitting an executable package
to the end user computer 30 via a wide area network 60. The
operator of the end user computer 30 installs the executable
client on the end user computer 30.

The operator of the end user computer 30 then starts the
client software. The client software accesses a worlds server
10 via a wide area network 60 and either authenticates a
customer account against a database 20 or creates a customer
account in a database 20. Worlds servers 10 provide 2-dimen-
sional and/or 3-dimensional virtual worlds services, such as
hosting avatars and maintaining spaces and objects with
which avatars can interact. Worlds servers 10 may perform
various methods described throughout this specification, and
may also be referred to as service providers or other devices.
Worlds servers 10 may provide additional services such as
transactional services, virtual currency services, authentica-
tion services, graphic design services, and the like. As the user
computer 30 interacts with the virtual environment param-
eters transmitted by the worlds server 10, the worlds server 10
accesses the database 20 to obtain information about the user,
the virtual environment, and the virtual objects in the envi-
ronment.

Avatar Boundary Crossings

The operator of the client computer 30 may encounter an
area in the virtual environment where control over the virtual
environment is exercised by an operator other than the opera-
tor of the worlds server 10. Such a system boundary may be
analogous to a hyperlink on a web page wherein the client
web browser is directed to download new content from a third
party operator different than the operator of the site that
served the content containing the hyperlink. Similarly, an
avatar could traverse a boundary within a virtual worlds
server, such as between two rooms or buildings. In such a
case, thetechnology may include several alternative methods.
In one embodiment, the worlds server 10 communicates with
the third party operator’s worlds server 80. The worlds server
10 gathers any necessary information from database 20,
transfers control of the end user avatar and data to the third
party worlds server 80, which in turn records such data to its
database server 90, and confirms to worlds server 10 that the
transfer has been successful. Upon such confirmation, the
worlds server 10 makes an entry in the database 20 that the
avatar has been “checked out” of the database 20 (or, in
another embodiment, actually removes the avatar data or
some portion thereof from database 20). “Checking out” the
data may take the form of a cryptographically secure transfer
of control, such as is used for the virtual currency known as a
“bitcoin”

The transfer of control of the avatar from the original
worlds server 10 to third party worlds server 80 may be
termed a “Boundary Event.” A boundary event need not be
across a system, but could be within a system. For example,
within a system operated by a single operator of a single

20

25

30

35

40

45

50

55

60

65

14

worlds server 10, a boundary event could occur. Similarly, a
boundary event could result from movement within a single
area of a single virtual world. Thus, for example, a user
moving from an amphitheater to a coffee shop within a Virtual
Vancouver World might encounter a boundary event. Even
within a single location, a user moving from one dimension to
another might encounter aboundary event. A Boundary Event
may also encompass temporal movement, such as when an
avatar remains at a location for a period of time or when an
avatar engages in a simulation of replay of past events. Thus,
a “boundary event” may also encompass the movement of an
avatar between areas with different rule sets, different
attributes, different ownership, different operators, and/or
other differences.

In various embodiments discussed in detail below, bound-
ary events are handled in a manner that results in a positive
experience for the end user, protects the value of end user
possessions, protects the integrity of areas operated by the
receiving worlds server, and otherwise make possible the
exchange of users, data, objects, and other elements between
environments that would otherwise be incompatible or oth-
erwise difficult to make interoperable.

Boundary Events may be handled analogously to several
physical world constructs, including international travel
“customs” and “immigration,” “life support” elements such
as may be necessary in scuba diving or high altitude climbing,
“legal compliance” such as is necessary to avoid arrest in an
unfamiliar jurisdiction, and “behavioral compliance” such as
is necessary to comply with the social norms expected of a
visitor in a new place. As an avatar seeks to traverse a bound-
ary, the client or server software may operate to enforce,
advise, or facilitate compliance with any of these require-
ments. In one aspect, the physical world characteristics of the
operator of the avatar, including without limitation age, gen-
der, and geographical location, may be encoded within, asso-
ciated with, and/or imputed to the avatar itself for purposes of
boundary events or otherwise.

Transit within the VWW may be simultaneously accom-
plished in a variety of ways. Several different layout examples
are provided below, but it should be understood that contigu-
ous positioning in the layout represents functions that allow
movement between contiguous areas, even though the areas
need not be literally stored or operated on contiguous devices.
Similarly, the layout functionality need not be identical for
every user, so, for example, an adult user may find a gambling
world contiguous to a car world, while a child may find only
an empty lot contiguous to the car world. The visibility of
boundaries, hyperlinks, and other mechanisms of moving
between areas may be dependent on attributes of the world
and/or avatar. For example, boundaries leading to adult-
themed areas may be invisible to children, and boundaries to
areas where an avatar is not permitted to enter may be hidden.

For example, one virtual world system may include a cen-
tral transportation center, or hub, connected to multiple vir-
tual worlds. Ilustrative examples of such virtual worlds
include a Virtual Vancouver World, Business District World,
Swordfight World, Space War World, Kids’ Playground
World, Car World, and/or Red Light Center World.

The central transportation hub may serve as a place where
all avatars may be moved from one virtual area to another.
Validation functions may be performed at the hub, for
example, to validate that the user has permission to enter a
certain area. For example, a user may log into the VWW
system and appear either at the hub or in any of the other areas
within the VWW environment, depending on the address
provided to the system upon log-in. The address may be

US 8,621,368 B2

15
analogous to a URL for the HTTP protocol, though it may
take on a variety of forms in various embodiments.

A user who desires to move from the hub to the Virtual
Vancouver World, for example, could cause the avatar to walk
or run to the border between the hub and the Virtual Vancou-
ver World, or could “warp” to the area by entering an address
within the Virtual Vancouver area. From the Virtual Vancou-
ver area, the user may be able to walk to adjacent areas
without having to transition through the transportation hub.
Thus, for example, the Virtual Vancouver area may have
direct access to the Business District area or the Red Light
Center area.

In an embodiment, areas that are compatible are treated as
adjacent, so that, for example, the Kids’ Playground would be
adjacent to the Space War and Car areas, but not to the Red
Light Center (e.g., analogous to a red light district) or Busi-
ness District areas. The accessibility of particular areas with
other areas may be based on a physical layout and adjacency
between spaces, but this need not be necessarily so. Users
and/or operators may be permitted to create alternative or
customized layouts, so that, for example, a user who com-
monly moved between normally discontiguous Space War
and Patent Law areas might make such areas contiguous.

One embodiment may include a system whereby users not
meeting the criteria for entry into a world are simply denied
access, even if the area for which access is being sought is
presented to the user as adjacent. An area may be adjacent to
another based upon various factors, including being depicted
as adjacent, being immediately accessible via a non-linear
transportation mechanism such as moving between dimen-
sions or “warping,” or bearing other indicia of being adjacent.
Areas may be adjacent even where physical topology would
ordinarily prevent adjacency, so for example five distinct
areas could all be simultaneously adjacent to each other. As
another example, a side of a first area might be 10 units in
length, but might abut a side of a second area, third area, and
fourth area that are each 8 units in length.

FIG. 2 is a block diagram of network components of a
virtual worlds system, as used in an embodiment. The system
may include worlds server 10, database server 20, network
60, third party worlds server 80, third party database server
90, transportation center/hub 110, Virtual Vancouver World
120, Business District World 130, Swordfight World 140,
Space War World 150, Kids’ Playground World 160, Car
World 170, Red Light Center World 180, Transportation Cen-
ter/Hub 310, Virtual World Region 320, Virtual World Region
330, and Virtual World Region 340.

The virtual worlds system of FIG. 2 may further include
various associations (e.g., hyperlinks) between worlds,
thereby making worlds “adjacent” or otherwise accessible.
For example, the system may include hyperlink 350 between
Virtual Vancouver World and Red Light Center World, hyper-
link 360 between Space War World and Kids’ Playground
World, and/or hyperlink 370 between Virtual Vancouver
World and Swordfight World. A hyperlink in a virtual world
may be implemented like a hyperlink on a web page, but given
the capabilities of 3-dimensional virtual worlds, a hyperlink
may be implemented in a variety of other ways, such as a door
or wall walked through by an avatar, a transportation vehicle,
awarp tunnel or device, a teleportation system, a street, and so
on.

Additional connections between worlds may be present in
the sample system of FIG. 2. The transportation hub 110
associated with worlds server 10 may be connected to five
virtual worlds 120, 130, 180, 320, and 330 in this embodi-
ment. The transportation hub 310 associated with a third party
worlds server 80 may be connected to five virtual worlds 140,

5

20

25

30

40

45

50

55

60

65

16

150,160,170, and 340 in this embodiment. The worlds server
10 may further be connected to a database 20 which may be
internal or external to worlds server 10. In this embodiment,
the third party worlds server 80 is connected to a database 90
which similarly may be internal or external to server 80. The
two worlds servers 10 and 80 may communicate through a
network link 60.

In one embodiment, the worlds servers 10 and 80 are not
necessary for some or all connections between worlds. For
example, the Virtual Vancouver World 120 may include a
hyperlink 370 leading to the Swordfight World 140. In such a
case, one embodiment employs a cryptographically secure
decentralized system permitting transfer of control of an ava-
tar directly from one world to another. A system similar to the
system behind the Bitcoin technology is one example of a
cryptographically secure decentralized system. In such a
case, the client computer 30 may initiate a transaction with
the worlds server responsible for the destination worlds
server 80 and, optionally, the origination worlds server 10 so
that the data associated with the avatar is transferred by the
client to the destination worlds server 80 without requiring
any direct communication between the two worlds servers 10
and 80.

In another embodiment, worlds commonly controlled by a
single worlds server 10 may permit the linking and transfer
350 of avatars between worlds without a requirement that the
avatar appear or transit through a centralized hub 110. Even
when a transfer takes place through a centralized hub 110, or
even between different worlds servers 10 and 80, the transfer
may be made in a manner that does not make the transit
mechanism apparent to the end user, so that, for example, the
end user is not shown the hub 110 during the transit process.
This transfer process may be used where the user actuates a
link or other transportation mechanism that indicates a desire
to directly transport the avatar to a target area other than the
transit hub.

Whether the user is apprised of the transit through a cen-
tralized hub 110 or 310 or not, the centralized hub 110 or 310
may perform validation, legality, and/or other tests to deter-
mine whether the user is permitted to perform the desired
action. Additionally, the centralized hub 110 or 310 may
translate avatar properties between the departure world and
world of entry, such as is discussed further below. In alternate
embodiments, the world of departure and/or world of entry
may perform additional or alternate tests and/or translations
of avatar properties.

In an embodiment, the process of transit between worlds
includes a translation or modification of the user’s properties
from the properties appropriate for the first world (e.g., the
world of departure) to properties appropriate for the second
world (e.g., the world of entry). For example, consider an
avatar moving from the Space War World 150 to the Car
World 170. If the Car World 170 is configured so that all
avatars appear as cars, a human warrior avatar from the Space
War World 150 would be either out of place in the Car World
170, or may simply fail to be able to operate or move to the
Car World 170. Similarly, an avatar that possesses a laser gun
in the Space War World 150 attempting to move to the Sword
Fight World 140 may find itself in possession of an item that
does not function, or is not permitted, within the area. Loss of
possessions may result in loss of value, functionality, status,
and/or other desirable attributes.

An aspect of the technology involves mapping avatars or
objects in one world or theme to corresponding avatars or
objects in another world or theme. For example, in a realistic
world intended to track real world properties, a tall human
male avatar might possess a motorcycle and a gun. When

US 8,621,368 B2

17

transiting to the Sword Fight World 140, the possession/
avatar mapping system may determine that a tall human male
with a motorcycle is equivalent to a tall human knight with a
horse (e.g., equivalent to the motorcycle owned in the realistic
world) and a sword (equivalent to the gun owned in the
realistic world). The mapping may be accomplished via a
database (such as SQL) or other lookup table or system or by
a programmatic ruleset.

The mapping may be set according to heuristic or other
analysis of properties of avatars or objects. It may also be
accomplished through express user preferences or prefer-
ences or rules set by one or both of the worlds involved. In one
embodiment, the objects retain their characteristics through-
out any transitions. Thus, for example, if the tall human male
knight’s horse is killed while in Sword Fight Area 140, the
user would be in possession of a non-functional horse in that
area, or in possession of a non-functional motorcycle when
moving back into the realistic avatar world. If the user’s
sword is sold, it would remain property of the purchaser and
thus even after moving into another area, the sword (or what-
ever object it turns into in the new area) would remain the
property of the purchaser.

In an embodiment, a world, area, or time slice is identified
as “unreal,” possibly on a per-object and/or per-avatar basis
(e.g., unreal as to objects X and Y and avatar Z only). This
could, for example, be of great utility if there was a practice
arena in the Sword Fight Area 140. A user might engage in a
sword fight, have his sword destroyed, and because the sword
was marked as unreal, the sword could be recovered auto-
matically when the user leaves the area (or when the user
takes some action or with the passage of time). Similar unreal
behavior could apply to expenditure of funds (e.g., real
money could be used in a casino or trading floor but none of
the actions taken with the real money would have perma-
nence, making the real money effectively cloned into fake
money). Similar unreal behavior could apply to the health,
development, or welfare of an avatar, object or entity. This
might be particularly useful in modeling disease behavior for
example.

Access to an unreal world, area, or time slice may be
conditioned on the payment or virtual currency, real currency,
or other virtual or real goods or things of value. The cost of
access may additionally be contingent upon the events within
the unreal area. This may have the effect of making the area
partially unreal, such as where a user pays ten virtual currency
units to access a virtual casino for an hour where only ten
percent of gains or losses are real. In another embodiment,
areas may be partially real in that certain events are persistent
(such as expenditure of virtual currency) while other events
are unreal (such as the death of an avatar or the loss of a
sword).

Just as a sword in one world may be a gun in another,
without losing its global status as an object of type “weapon-
personal-powerful,” for example, so too may an avatar remain
the same avatar type while displaying characteristics appro-
priate to the world it is then inhabiting. For example, an avatar
within Virtual Vancouver World 120 may move into Car
World 170. If Car World 170 is defined as only having cars as
avatars, the avatar may be automatically changed into a car.
Alternatively, the user may be warned that the avatar is about
to be rendered as a car and asked for permission before
continuing the transition. Items that are inappropriate to the
new avatar rendering (for example, the avatar’s car from
Virtual Vancouver World 120 which would make no sense as
a possession of a car avatar in Car World 170) may be left on
the server or otherwise not displayed in the new environment.

20

25

30

35

40

45

50

55

60

65

18

Similarly, objects with correspondence to the new avatar
may be transformed, possibly automatically, according to
rules set by the user, the operator of the system, the operator
of the world, and/or operators of other worlds. In this
example, a human avatar with a fancy watch and fancy shoes
may see the watch turn into a fancy car-mounted clock and the
shoes into fancy tires when moving into Car World 170. In
some embodiments, clothing and items with aesthetic ele-
ments may retain an aesthetic theme, so a human avatar with
red clothes, for example, might transform into a car avatar
with red paint when moving from Virtual Vancouver World
120 to Car World 170.

FIG. 3 is a flowchart of a process of enabling an avatar to
cross between two locations (e.g., worlds, scenes, instances,
areas, etc.), as used in an embodiment. The locations may be
two different service providers operating on different com-
puting hardware, two virtual worlds operated on a single
server, two locations or scenes within a virtual world, and/or
two instances of a scene. (“Scenes” are discussed further
below, and generally refer to a portion of a virtual world, such
as a building or room.) The process, at each respective loca-
tion, may be performed by a computing system, such as the
Worlds servers 10 and 80 of FIG. 2. In various embodiments,
additional blocks may be included, some blocks may be
removed, and/or blocks may be connected or arranged differ-
ently from what is shown.

Atblock 301, the computing system of location 1 identifies
an attempt of an avatar to cross a world boundary. A world
boundary may be similar to a link on a web page, insofar as it
enables an avatar to access a different location. World bound-
aries may be represented in a virtual world as a path, door, a
window, text on a wall, a touchable object, or the like. World
boundaries may also be made imperceptible to the user,
imperceptible to users with permission to cross them, imper-
ceptible to users who may cross them without material alter-
ations to their possessions, or a combination thereof. Simi-
larly, world boundaries may be made larger, smaller, more
perceptible, or less perceptible based on such foregoing fac-
tors. The system may detect the attempt to access the world
boundary at block 301 based on the avatar moving on or
through, touching, pushing, grasping, manipulating, or oth-
erwise interacting with the world boundary, and/or by a user
of the avatar sending an appropriate command to the virtual
world indicating a request to cross the boundary.

At block 302, the system attempts to determine a second
location associated with the boundary. As a hyperlink on a
web page indicates a second location for a web browser to
access, so may a world boundary indicate a location, denoted
in FIG. 3 as location 2, to be accessed by the avatar. The
location may be associated with the world boundary as rep-
resented within appropriate data structures of location 1 and/
or the location may be determined by the computer system of
location 1 accessing an external data source such as a location
table or database.

At block 303, the computer system of location 1 commu-
nicates with a computer system of location 2, to initiate a
transfer of the avatar. The transfer may be made by a propri-
etary or well-known network protocol, such as HTTP, FTP,
SSH, SFTP, SSL, TLS, or the like, or by a combination
thereof. In an embodiment, location 1 initiates transfers of
avatar data at block 303. The avatar data may be represented
in various formats suitable for data interchange, such as
HTML, XML, CSV, RPC objects, CORBA objects, YAML
data, and so on. Location 2 receives the transfer request at
block 304. The transferred data may include the avatar data,
or the avatar data may be transferred at a later point during the
process (e.g., blocks 306-307).

US 8,621,368 B2

19

At block 305, the computer system of location 2 authenti-
cates the avatar for transfer. Authentication may be used to
determine whether the avatar is permitted to access the new
location. For example, if location 2 requires password authen-
tication or other authentication, it may query the user of the
avatar and/or the computer system of location 1, to provide
such authentication credentials. Additionally or alternatively,
location 2 may maintain a whitelist or blacklist of avatars
and/or associated users, and/or avatar or user characteristics,
for example to keep track of exiled, banned, or otherwise
unwanted entities. Avatars may be rejected from a location
based on administrator settings for the location and/or by
automated processes such as behavioral analysis. For
example, location 2 may not permit an avatar to enter if the
location determines that the avatar poses a security risk to
others, does not meet rules of the location, has a history of
undesirable behavior, and so on. Authentication may be based
on avatar data and/or other data transferred at blocks 303 and
304, if such data had been transferred, as well as other data
available at location 2.

If the avatar is authenticated for transfer at block 305, then
at blocks 306 and 307 a transfer protocol is completed
between locations 1 and 2. The transfer protocol, in an
embodiment, may ensure that the avatar is present only at one
of the locations, thus preventing the avatar from simulta-
neously acting in two locations at once, if this is desirable to
the systems. In alternate embodiments, avatars may be per-
mitted to be in two places at once, in which case the transfer
protocol need not ensure that the avatar is only in one loca-
tion. In an embodiment, a cryptographic protocol such as the
Bitcoin protocol is employed, to ensure that the avatar is only
at one location. Alternately, a centralized database or record
of avatar locations may be used to ensure avatar uniqueness.

The transfer protocol may also involve transfer and/or con-
version of items and/or characteristics of the avatar, as shown
at block 308. As explained in detail below, an avatar may be
associated with characteristics, such as possessed items,
appearance features, personality features, social relations,
and so on. In moving between worlds or other locations, the
avatar may have those characteristics automatically trans-
ferred. In some embodiments, those characteristics may fur-
thermore be translated or converted to be appropriate to the
destination location. For example, if the destination location
has certain rules about required and/or permitted possessions,
and the avatar has a possession that is not allowed in the new
world, then the avatar’s possession may be exchanged, con-
verted, altered, replaced, removed, or otherwise affected. In
various embodiments, the transfer process may be performed
by a computer system at location 1, a computer system at
location 2, a client computing device, a centralized server,
and so on, as well as any combination of these.

In one embodiment, the transfer of an avatar may be made
in a partial manner, separating the avatar from one or more
elements associated with the avatar, such as possessions. In
such a manner, possessions not permitted to cross a boundary
may be retained on the originating system and reclaimed by
the avatar upon return. In another embodiment, a duplicate or
clone of the avatar may be permitted to cross the boundary,
and such duplicate may optionally be prohibited from return-
ing across the boundary. The duplicate and the original avatar
may remain linked, such that they share virtual currency or
items, damage to one avatar accrues to the other, etc. In one
embodiment, upon return of a duplicate avatar across a
boundary, the avatars are merged, with some or all changes
taking place to one or both avatars in the time since the
duplication took place being reflected in the merged avatar.

20

25

30

35

40

45

50

55

60

65

20

At block 309, the computer system of location 1 disen-
gages the avatar. In parallel or serial, at block 311 the com-
puter system of location 2 engages the avatar for interaction.
This may be reflected by the computer system of locations 1
and/or 2 sending appropriate data to the computing device of
the user of the avatar, to update the graphical display for the
avatar reflecting the new location. In an embodiment, various
transitions may be used during this transfer, to indicate the
change in location for the avatar. In an embodiment, user
interfaces may be presented during the process of blocks 301
through 311 to inform the user of the avatar of the process
and/or to allow the user to affect the process. For example,
user interfaces may be presented at block 308 to enable the
user to control or otherwise affect the conversion of items or
other characteristics. For example, in some cases the user may
have more than one option for a characteristic or item that a
currently held item or characteristic may be translated into in
location 2. The user may further be given options to cancel the
world boundary crossing, should the ramifications of transfer
appear to be undesirable or for other reasons. In one imple-
mentation, for the purpose of making the user experience
more seamless or other reasons, the computer system of loca-
tion 2 may provisionally engage the avatar before the com-
puter system of location 1 disengages the avatar. This may be
conditioned on the reputation of each of the locations, con-
tractual or other relationships between the locations, latency
between the locations, historical data about success of move-
ment of avatars between locations, or other factors.

FIG. 4 is a flowchart of a process of converting items
between worlds or other locations, as used in one embodi-
ment. The process may be performed, for example, by a
computer system as described with respect to FIG. 3. The
process may be performed at block 308 of FIG. 3. In various
embodiments, additional blocks may be included, some
blocks may be removed, and/or blocks may be connected or
arranged differently from what is shown.

As explained previously, avatars may be associated with
characteristics, such as possessions, appearance features, per-
sonality features, and so on. Some or all of those character-
istics may be appropriate in one world but not another. For
example, an avatar may operate in a space-themed world, in
which avatars wear space suits, fly spaceships, and fight with
laser guns. A second world may be a medieval world, in which
avatars wear armor, ride horses, and fight with broadswords.
It can readily be seen that the items appropriate for the space-
themed world would be out of place—and even inoperable—
in the medieval world, and vice versa. Requiring the user of
the avatar to dispose of items for one world and acquire items
for another world every time the avatar crosses boundaries
may be time-consuming, inefficient, and undesirable to the
user. Thus, the system may enable an automated conversion
process, such as that shown in FIG. 4.

At block 401, the system determines the characteristics of
the avatar. The characteristics may be represented in a data
file such as that described with respect to blocks 303 and 304
of FIG. 3. Alternately, the characteristics may be acquired
from an external and/or internal repository of characteristics.

The system then proceeds to review the characteristics and
determine appropriate conversions. At block 402, the system
identifies one of the avatar’s characteristics, and attributes of
the characteristic are determined at block 403. Attributes ofa
characteristic may include tags, features, descriptions, meta-
data, or other information associated with the characteristic.
For example, a spaceship in the space-themed world may
have attributes such as size, speed, power, age, and so on.
Similarly, a horse in the medieval world may have attributes
such as breed, stamina, age, pedigree, and so on. In an

US 8,621,368 B2

21

embodiment, the attributes are based on a common object
attribute model, so that attributes between different objects
may be readily compared. Characteristics not relevant to the
new region need not be reviewed, and the characteristics to be
reviewed may be identified using a whitelist or blacklist.

In an embodiment, one of the attributes is a class attribute
indicating a type of object, such that objects of the same
and/or similar class may be exchanged. For example, the
spaceship of space-world and the horse of medieval world
may be both of the class “transportation,” to indicate that both
items are modes of transport in the respective worlds. The
class attribute need not be consistent across multiple worlds.
For example, a broadsword may be classified as a “weapon”
in a medieval world, but classified as a “relic” in an archae-
ology or exploration world. In one embodiment, a classifica-
tion translation table may be maintained to track correlations
between different class names used in different worlds.

In one implementation, the class system may utilize a
nomenclature and/or a hierarchy system that functions to
better facilitate conversions and user understanding of con-
versions. In one such implementation, the nomenclature may
be similarto that used by the DNS system, and may optionally
function as a pointer to data about the ultimate object.

As one example, consider a spaceship object, which may

have attributes such as those shown in Table 1 below.
TABLE 1
Condition RightThrusterBroken
Implementation Rocketship
Class CapableOfEightRiders
Type Transportation
Location within region Quadrant3.2.1
Region SpaceDock7
World SpaceWorld
Owner BuckRogers

The elements of the classification of the above spaceship
may be hierarchical (in Table 1 above, the elements generally
are arranged from more specific to more general), and they
may be represented in a hierarchical fashion, analogous to the
arrangement of subdomains separated by periods in the DNS
system, or folders separated by slashes in filesystems.

Atblock 404, the computer system determines whether the
characteristic of block 402 can be mapped to the world being
entered. The determination may be made based on the
attributes assessed at block 403. In some cases, the charac-
teristic may not be mappable. For example, a weapon such as
a broadsword or laser gun may have no equivalent in a peace-
ful world. In this example, the determination may be based on
the class of object; that is, the peaceful world may include a
rule that no characteristics of class “weapon” (and/or other
similar classes) are allowed. If the computer system deter-
mines that no mapping is possible at block 404, then at block
405 the computer system proceeds to review the next charac-
teristic.

Where there is a determination that an object is not map-
pable, the object may optionally be checked into a storage
server, allowed to stay with the avatar but in unusable form
(such as in the form of a virtual photograph of the object) at
least until the object enters an area where it is usable or
mappable, and/or virtual or real currency, goods, or services
may be offered in exchange for the object. Such an offer may
be particularly suited to instances where an avatar is intended
to remain in a region where the object is not mappable for
more than a short period of time. Alternatively, the object may
be mapped to one of a plurality of user or operator selected
like or unlike objects (such as a conversion of a sword into a

20

25

30

35

40

45

50

55

60

65

22

plowshare), or certain objects may be automatically con-
verted into a like or unlike object. The global and/or local
state may be used to maintain this storage of unusable or
multiply-mapped objects.

Ifthe characteristic is mappable to the world, then at block
406 the appropriate characteristic for mapping is determined,
and the avatar is associated with the new characteristic. The
determination of the new characteristic may be made based
on the attributes determined at block 403, and further based
on attribute data of characteristics known or available to the
world. In an embodiment, the world chooses a characteristic
with sufficiently similar attributes, based on a heuristic, maxi-
mization, optimization, matching, regression, and/or other
algorithm for comparing characteristics. In an embodiment,
the user may have input into the selection of the mapped
characteristic.

In an embodiment, characteristics are associated with real
money, virtual money, and/or other exchangeable currency or
items of value. In some cases, the avatar’s original character-
istic may be worth more or less than the mapped characteristic
provided. As appropriate, then, the system may charge or
refund an account associated with the avatar, as shown at
block 407. In an embodiment, the charge or refund is made
only if the conversion of the characteristic is permanent.
Thus, in some cases, an avatar’s characteristics may only
temporarily be converted while the avatar is present in the
world, and the original characteristics may be restored when
the avatar leaves the world. In such a case, accounting for
value changes may be unnecessary.

Alternatively, surplus value may be held in an account on
behalf of the user, and a deficit in value may be charged to the
user or an amount equal to the deficit frozen in the user’s
account, all of which may be held for a period of time, until
the object is converted back, or the earlier of the two events.
In another embodiment, conversion of the object may be
charged to the user (in the event of a value deficit) or credited
to the user (in the event of a value surplus) together with an
agreement that the object may be converted back at a fixed
exchange rate during a certain period of time. Interest may
accrue or be charged in any of these scenarios.

In various embodiments, the conversion of characteristics
is permanent rather than temporary. In such cases, at block
408 the global state for the avatar is updated as appropriate to
reflect the avatar’s change of characteristics. Specifically, at
this block, the avatar’s old characteristics may be revoked in
the global state, and the avatar’s new characteristics may be
added to the global state. The global state, in an embodiment,
reflects the avatar’s characteristics across all worlds. Thus,
when the global state is updated for the avatar’s characteris-
tics, the avatar may not receive previous characteristics when
departing from the world. In an embodiment, the original
characteristics of the avatar may become associated with the
world after the global state update. For example, if an avatar
exchanges a spacesuit for a coat of armor upon entering the
medieval world, the spacesuit may become the possession of
the medieval world, thus enabling the medieval world to sell
or otherwise extract value from it. Alternately, the character-
istic may be returned to a common pool for the world or
service provider. Optionally, such a conversion and change of
ownership may be in exchange for something of value (virtual
or real), such as entry to the world. Optionally, such a con-
version may occur over time, so that the user’s interest in the
item declines as time passes while the user is in the world.

In an embodiment, some characteristics may be perma-
nently converted, while other characteristics may be tempo-
rarily converted. Such procedures for conversion may be
defined by the world being entered by the avatar and/or

US 8,621,368 B2

23

accessed from rules of the world being entered and/or the
world being left. For example, a world may specify that
appearance-related characteristics are temporarily converted,
while possession-related characteristics are permanently
converted. In one embodiment, the user is presented with a
visual representation of which characteristics may be perma-
nently converted and/or which characteristics may be tempo-
rarily converted and/or which characteristics will be unaf-
fected. Such presentation may be made prior to the
conversion, and the conversion may be conditioned on user
approved of such conversion. In a simple example of an avatar
with a hat, a shirt, and a sword where the hat is unaffected, the
shirt may be temporarily affected, and the sword may be
permanently affected, the hat may appear (or be highlighted)
white, the shirt yellow, and the sword red.

When all of the attributes have been processed through
block 405, then at block 409 the computer system adds other
default characteristics to the avatar, as necessary. A world
may define certain characteristics as being required or other-
wise default for avatars. For example, the space world may
require avatars to possess an oxygen tank for breathing. If an
avatar enters the space world, then the system may provide an
oxygen tank to the avatar upon entry. In various embodi-
ments, the avatar receives default items upon all entries to the
world, upon the avatar’s first entry to the world, and/or based
on whether the avatar already has the item or another item
mappable to the default item. In an embodiment, the avatar
may be charged for the default item. In another embodiment,
the item may be provided on a “rental” or “loaner” basis.

At block 410, the avatar’s characteristics are further
updated based on local state stored by the world. The local
state may be used by a world to maintain information perti-
nent to the particular world but not to the global avatar state.
For example, the local state may maintain information about
characteristics specific to the world. Characteristics may be
updated at block 410 by being added, removed, or modified.

Local state updates may be used to prevent undesirable
refreshing of items through strategic entry into and departure
from the world. In the example above with regard to space
world, oxygen tanks may deplete over time, and avatars may
be required to periodically refill their oxygen tanks (perhaps
for a fee). However, if an avatar is automatically granted an
oxygen tank upon entry into the space world, then the avatar
could avoid purchasing a refill by leaving space world, dis-
posing of the oxygen tank, and returning to space world to
receive a new tank. Space world may use local state to avoid
this, by recording the avatar’s oxygen tank level, so that when
the avatar returns, the oxygen tank is set to the previous level.
In another example, an avatar may lose an item in a world, but
the world may not make the loss of the item permanent so that
the item is restored when the avatar leaves the world. Local
state may be then used to ensure that, when the avatar returns
to the world, the “lost” item is not accessible to the avatar.
Thus, local state may be used to ensure persistence of char-
acteristics of an avatar as necessary through entry into and
exit from a world.

In addition to, separate from, or in conjunction with local
state, the system may prevent a user from causing one or more
items, or any items to be mapped between areas for a period
of time after the last mapping, and may optionally slowly
return the ability to do a mapping using a formula, such as
M=N/T where M is the percentage of items that may be
mapped, N is the number of seconds that have passed since
the last mapping, and T is the amount of time the system
requires between full mappings. Such a formulaic approach
may alternatively or additionally be used to determine the
cost of mapping prior to the expiration of the set amount of

20

25

30

35

40

45

50

55

60

65

24

time (i.e. cost would be the full cost of an early mapping or
other mapping multiplied by 1 minus M).

FIG. 5 is a flowchart of a process of mapping characteris-
tics from global state to local state, as used in one embodi-
ment. The process may be performed by a computer system,
atblock 406 of FIG. 4, for example. In various embodiments,
additional blocks may be included, some blocks may be
removed, and/or blocks may be connected or arranged differ-
ently from what is shown.

At block 501, the computer system identifies one charac-
teristic of an avatar being processed during a conversion
procedure such as that described with respect to FIG. 4. The
characteristic may be drawn from the global state identifying
the avatar’s characteristics. At block 502, the computer sys-
tem determines whether there is a local modification to that
characteristic. A local modification may be a modification
applicable to the specific world and stored with that world’s
local state, such as with the oxygen tank and lost item
examples described previously. If there is such a local state
modification, then that local state modification is applied at
block 503.

If there is no local state modification, then at block 504 the
system determines whether there is an agreement for conver-
sion of the item with another world or location. Two worlds
may have an agreement that certain items or characteristics
are convertible, so that those characteristics may be
exchanged. For example, the space world and the medieval
world may have an agreement that laser guns of a particular
type may be exchanged with broadswords of a particular type.
The agreement may be stored in scripts, code, or other local
state of the agreeing worlds. If such an agreement is found,
then the agreed conversion is used at block 505. Invoking the
conversion may involve contacting the world in agreement,
by network connection or other communication.

If no agreement is found, then at block 506 the world’s
default conversion procedure is followed. This conversion
procedure may account for the attributes of the characteristics
being converted, the attributes of various permitted charac-
teristics, virtual currency values of the characteristics, supply
and/or demand for the characteristics, and so on. Further-
more, the conversion may be made temporary or permanent,
as specified by the world.

FIG. 6 is a block diagram of example data structures of
global avatar states and local world data, as used in an
embodiment. The data structure may be stored on computer-
readable media such as a hard drive, SSD, tape backup, dis-
tributed storage, cloud storage, and so on, and may be struc-
tured as relational database tables, flat files, C structures,
programming language objects, database objects, and the
like. In various embodiments, additional elements may be
included, some elements may be removed, and/or elements
may be arranged differently from what is shown.

Global avatar state 601 may be stored by a service provider
or other data repository, and maintain records relating to one
or more avatars. Global avatar state may maintain informa-
tion such as characteristics of avatars, including attributes 602
(such as appearance, personality, social relations, etc.) and
possessions 603. Additionally, global avatar state may main-
tain authentication data 604, which may be used, for example,
at block 305 of FIG. 3.

As described previously, characteristics may be associated
with attributes defining aspects of each characteristic. The
attributes may be used, for example, in the mapping process
of block 406 of FIG. 4. The characteristics may be stored as
part of global avatar state 601. Alternately, attributes may be
stored in a separate data repository of attributes of avatar
characteristics. In an embodiment, each world maintains

US 8,621,368 B2

25

attributes for characteristics, thus enabling worlds to interpret
characteristics differently (as explained with respect to the
broadsword “weapon’/“relic” example).

Virtual world data 605 may include information for oper-
ating a virtual world. Rules relating to the conversion pro-
cesses, such as that described with respect to FIG. 4, may be
included in virtual world data 605. For example, required
characteristics 606 may be used at block 409 of FIG. 4 to
determine required or default characteristics and/or attributes
of characteristics. Conversions rules 607 may define the pro-
cesses of converting characteristics and/or attributes of char-
acteristics.

Virtual worlds may maintain characteristics, such as those
acquired during a conversion processes. These characteristics
may be stored as possessions 608 in the virtual world. Virtual
worlds may also maintain authentication data 609 for deter-
mining authentication and permissions of avatars upon entry,
as described with respect to block 305 of FIG. 5.

As described previously, each virtual world may maintain
alocal avatar state, used for modifying an avatar’s global state
upon entry to reflect world-specific changes to characteris-
tics. These modifications may be maintained in data structure
610, which includes information on attribute modifications
611 and possession and other characteristic modifications
612. The stored modifications may include additional char-
acteristics to be added to avatars, characteristics to be
removed from avatars, and/or modifications to attributes of
characteristics of avatars. Additionally, as described with
respect to block 504 of FIG. 5, a virtual world may maintain
one or more world-to-world local agreements on character-
istic exchanges.

FIG. 7 is a flowchart of a process of changing an avatar’s
characteristics while the avatar interacts with a virtual world,
as used in an embodiment. The process may be performed by
a computer system operating a virtual world, as described
previously. In various embodiments, additional blocks may
be included, some blocks may be removed, and/or blocks may
be connected or arranged differently from what is shown.

The disclosure heretofore has considered the handling of
avatar characteristics upon entry into a virtual world or transit
within a virtual environment. As the avatar interacts with the
virtual world, the avatar’s characteristics may change: the
avatar may acquire new items, sell or dispose of items, change
appearances naturally or upon user direction, and so on. An
avatar might gain or lose characteristics (e.g., the avatar
acquires or loses items), or attributes of characteristics might
change (e.g., the avatar’s sword is damaged). Similarly, the
avatar itself may change, such as by aging, by acquiring new
skills, etc. These changes may or may not be reflected in the
avatar’s global state, depending on the configuration of the
particular world. For example, a “testing” world may provide
that an avatar’s characteristics are restored upon departure,
whereas a “realistic” world may effect permanent changes to
an avatar. Furthermore, virtual worlds may be concerned with
undesirable gaming of the conversion system, where for
example, an avatar may repeatedly enter and leave a world, to
try to gain illicit or undesired advantages by invoking the
conversion processes.

Additionally, there may be instances where the user desires
to revert back to a prior state upon occurrence of an event. For
example, upon leaving space world, an avatar may wish to
revert to the state the avatar was in upon entering space world.
Past state information may be maintained by the system (or
locally, on the client side) and utilized to determine the costof
such a reversion (or, in the case of a mix of elements that can
be purchased, such as new weapons, and elements that can-
not, such as an arm). In one embodiment, the user may select

20

25

30

35

40

45

50

55

60

65

26

or be provided with multiple reversion points, similar to save
states in a game. In one embodiment, the cost of reverting to
a particular state may be continuously or intermittently pre-
sented to the user, and/or the user may choose one or more
trigger costs at which the user will be warned and/or auto-
matically transported back to a place where the reversion can
take place and/or automatically reverted, all optionally with
the automatic deduction of the cost of purchasing the items
from the user’s account. In one embodiment, the cost (and/or
time required for reversion) is continually or periodically
adjusted for fluctuations in market price and availability of
items.

At block 701, an avatar interacts with a virtual world. The
interaction may result in a change in the avatar’s characteris-
tics, at block 702. The change may occur in response to an
action taken by the avatar and/or an automatic process such as
aging.

At block 703, the local state of the avatar may be updated.
The local state may be configured to affect the avatar’s char-
acteristics within the world. This may provide immediate
feedback to the avatar regarding the change in characteristic.

Atblock 704, the system determines whether a correspond-
ing change can be made to a global state. The determination
may involve complex processes in some embodiments,
depending on the configuration of the system and the virtual
world. For example, the system may determine that the
changed characteristic is not itself present in the global state,
but the changed characteristic was exchanged with another
characteristic that is present in the global state. In such a case,
the change to the world-based characteristic may be corre-
spondingly made to the global characteristic.

For example, if an avatar, originally from space world, has
a laser gun and enters medieval world, then the avatar’s laser
gun may be converted to a broadsword. If, in medieval world,
the avatar sells the broadsword to another avatar, then the
system may detect that the broadsword corresponded to the
laser gun, and so it may update the avatar’s global state to
remove possession of the laser gun.

In the case that characteristics are permanently converted,
as described previously, then the aforementioned reverse-
mapping procedure may not be required. Where the reverse-
mapping procedure is performed, it will be understood that
the virtual world may maintain appropriate data structures,
such as records of conversions, to facilitate the procedure. In
one implementation, including where characteristics are not
permanently converted, the transfer of an item, such as a laser
gun, may require (or the system may make) disclosure of the
state of the item, such as “laser gun temporarily converted to
broad sword.”

The mapping of changes to characteristics to global state
may involve similar complexity. For example, if the avatar’s
broadsword from above was bent or chipped during a fight, a
corresponding change to the avatar’s laser gun in global state
may be made. An identical change may not be appropriate: in
this example, a chip in a laser gun will likely not render the
laser gun less functional, whereas a chip in a broadsword may
decrease functionality. Accordingly, changes to global state
may be made through a mapping process as well, as defined
by the virtual world and/or the service provider. The changes
may be based on attributes of characteristics as described
previously. For example, a chip in a broadsword may be
interpreted as a decrease in an “power” attribute of a
“weapon”-class item, so a corresponding decrease in the
“power” attribute of the laser gun may be made to global state
(for example, making the laser gun fire shorter blasts).

Where a change to global state can be made at block 704,
the change is made at block 706 and stored at block 707. Ifthe

US 8,621,368 B2

27

system determines at block 704 that the change cannot be
made, then at block 705 the system may store an appropriate
local state modification. The local state modification may be
used to ensure that changed characteristics are not revertible
by the avatar leaving and reentering the world. For example,
with respect to the broadsword example from above, the chip
to the broadsword may be stored in the medieval world’s local
state. When the avatar with the chipped broadsword leaves
medieval world, the avatar’s original laser gun may be
restored. The avatar may then return to the medieval world
and have the laser gun converted again to a broadsword, and
the local state may automatically cause that broadsword to
have a chip in it.

FIG. 8 is a flowchart of a process of modifying character-
istics upon entering a world requiring permanent conversion
of characteristics, as used in an embodiment. The process
may be performed by a computer system operating a virtual
world. In various embodiments, additional blocks may be
included, some blocks may be removed, and/or blocks may be
connected or arranged differently from what is shown.

At block 801, the system determines the characteristics of
the avatar. At block 802, the system identifies corresponding
characteristics appropriate to the world. The corresponding
characteristics may be determined by a mapping process such
as that described with respect to FIG. 5.

Atblock 803, the system proposes an exchange of charac-
teristics to the user of the avatar. The proposal may be dis-
played as a user interface showing the characteristics to be
received, the value required, the characteristics to be for-
feited, and so on. In an embodiment, multiple options for
exchange may be presented to the avatar. In an embodiment,
the avatar may be presented with a selection of items for
exchanging, so that formation of a complete proposal pack-
age may not be required. The user may then be prompted to
accept the exchange, at block 804. If the user rejects the
exchange, then at block 805 the world may deny permission
to the avatar to enter the world.

It the user accepts the exchange at block 804, then at block
806 the avatar’s characteristics are revoked as appropriate.
The revocation may be written to the avatar’s global state to
ensure permanence. At block 807, the avatar is given the new
characteristics as proposed at block 803. There may be dif-
ferences in the value of characteristics revoked and charac-
teristics granted, so at block 808 the avatar’s account may be
charged or credited as appropriate.

Securable Objects and Permissions Resolution

It may be desired for avatars to be limited in their abilities
to take certain actions within a world, scene, or instance. For
example, it may be desired to prevent graffiti from being
applied to walls. The owner or proprietor of a space may wish
to mark objects with various permissions, allowing certain
people, classes of avatars and objects, or other actors as able
or unable to perform certain actions. The permissions may
also include persistence rules. For example, there may be
objects that can be altered or moved, but those actions expire
after a period of time or certain event (such as a person leaving
a room, all avatars leaving an area, all avatars other than
certain staff users leaving an area, and so on). In one embodi-
ment, history information for avatars may be utilized to rate
risk and desirability of having an avatar enter an area, for
example by forbidding entrance to a room to any avatar that
previously applied graffiti to a wall.

FIG. 9 is a block diagram of a computer network system
connecting virtual world service providers and users, as used
in an embodiment. In various embodiments, additional

20

25

30

35

40

45

50

55

60

65

28

blocks may be included, some blocks may be removed, and/or
blocks may be connected or arranged difterently from what is
shown.

Service providers 901 include computing devices and sys-
tems offering virtual worlds services. Service providers 901
may include computing hardware and/or software configured
to perform one or more of the processes described throughout
this specification. In an embodiment, multiple service provid-
ers 901 may be housed on a single computing device. Service
providers 901 may also be distributed across multiple
devices, as in cloud computing or distributed systems.

Service providers 901 communicate via one or more net-
works 902 with users 903. The networks may include, for
example, Internet networks, cellular networks, local area net-
works, wide area networks, wireless networks, Ethernet net-
works, and so on, as well as combinations thereof. Users 903
may include user computing devices, such as desktop com-
puters, laptop computers, mobile computing devices, mobile
phones, tablets, and the like. The term “user” throughout this
specification may be used to refer to a user device such as the
aforementioned and/or an entity, such as an individual, oper-
ating such a device, as appropriate to the context of the term.

Additional devices and systems may be included in the
system of FIG. 9. For example, service providers 901 may
communicate with common data stores, such as account data-
bases, registration servers, management servers, and so on.
Such use of centralized systems may allow service providers
901 to easily synchronize and coordinate among each other
(for example, to coordinate avatar location transitions, to
synchronize user accounts, and so on).

FIG. 10 is a hierarchical diagram of an example arrange-
ment of virtual worlds data on a service provider, as used in an
embodiment. The blocks represent types of data objects, and
interconnections may represent relationships among the data
elements, such as pointers, references, subclass relationships,
or the like. The data structures may be stored on computer-
readable media such as a hard drive, SSD, tape backup, dis-
tributed storage, cloud storage, and so on, and may be struc-
tured as relational database tables, flat files, C structures,
programming language objects, database objects, and the
like. In various embodiments, additional elements may be
included, some elements may be removed, and/or elements
may be arranged differently from what is shown.

Service provider 1001 may be represented as a data object
with general data relating to the service provider. A service
provider may maintain accounts 1002 for users of the service
provider. The account objects may include relevant data relat-
ing to users, such as usernames, authentication information,
attribute information, personal information, and so on. Each
account may further be associated with one or more avatars
1004, which the user may select for appearing in a virtual
world. The service provider may allow users to maintain
multiple avatars or may restrict users to a single avatar, in
various embodiments. By allowing users to maintain multiple
avatars, a service provider may allow users to take on differ-
ent appearances and personas in different situations, as
selected by the users and/or the service provider.

Service provider 1001 may further maintain worlds 1003.
Each world may represent a virtual space in which avatars
may interact. Service provider may maintain multiple virtual
worlds 1003, and each virtual world may be operated by
different users or administrators of service provider 1001.
Thus, a service provider may be analogously likened to a
country, and each world may be likened to a city within that
world. In one embodiment, virtual worlds may have distinc-
tive rules, features, communities, and the like, all the while
being subject to the general policies of the service provider.

US 8,621,368 B2

29

Virtual worlds 1003 may in turn include scenes 1005. Fol-
lowing the analogy from above, each scene may be likened to
a building or room within a city. Scenes represent virtual
locations where avatars may visit and enter. A scene may be
defined by various attributes such as appearance, size, furni-
ture, included items, architecture, and so on.

In some situations, it may be desirable to have a single
scene 1005 available but have avatars enter different copies of
that scene. For example, one may create a scene arranged to
appear like a virtual tennis court, and it may be desirable for
pairs of tennis players to be provided distinct copies of the
scene rather than making all players use the same virtual
space. Such copies are implemented by instances 1006. An
instance represents a running version of a scene, and avatars
interact within instances of scenes.

When an avatar locates a scene and attempts to enter that
scene, the service provider may determine whether to create a
new instance for that avatar or to place that avatar into an
existing instance. The determination may be based on rules
specified for the scene. For example, some scenes may be
configured to allow a maximum number of avatars per
instance (for example, a tennis scene may allow up to two
players per instance). New instances may also be created
based on time intervals, avatar user requests, availability of
objects within each instance, and so on. In one embodiment,
an environment may automatically change, or the avatars may
be automatically transported, when a threshold event takes
place. For example, avatars waiting to play poker may be
automatically transported to the poker room when eight ava-
tars have signed up for the table. In another example, a pro-
spective tennis player may wait in a waiting room until
another tennis player arrives and the waiting room is trans-
formed into a tennis court.

Instances may originally be configured based on the speci-
fication ofthe underlying scene. For example, a newly created
instance may be arranged to have the same contained items,
the same appearance, the same size, and so on, with respect to
the scene. In alternate embodiments, the scene may include
instructions that randomize or otherwise alter the nature of
each new instance. As avatars interact with an instance of a
scene, those avatars may cause changes to the contained
items, appearance, and so on. Such changes may or may not
be reflected back to the original scene, possibly depending on
the configuration of the scene. Additionally, in an embodi-
ment, new instances may be based on existing instances,
rather than being based on the original scenes.

Within a service provider, worlds 1003, scenes 1005, and
instances 1006 may be represented as data structure objects,
such as XML documents, relational database records, pro-
gramming language objects, or the like. Service providers
may include software modules to convert these objects to
graphical or other representations. The software may be oper-
ated on the service provider to generate those representations.
Additionally or alternately, client software operating on user
devices may perform the translation of data structure objects
to graphical representations.

FIG. 11 is a hierarchical diagram of an example arrange-
ment of objects within a virtual world, as used in an embodi-
ment. The blocks represent types of data objects, and inter-
connections may represent relationships among the data
elements, such as pointers, references, subclass relationships,
or the like. The data structures may be stored on computer-
readable media such as a hard drive, SSD, tape backup, dis-
tributed storage, cloud storage, and so on, and may be struc-
tured as relational database tables, flat files, C structures,
programming language objects, database objects, and the
like. In various embodiments, additional elements may be

20

25

30

35

40

45

50

55

60

65

30

included, some elements may be removed, and/or elements
may be arranged differently from what is shown.

A securable object 1101, as used in an embodiment, is a
general class or type of object used by a service provider.
Securable objects may include service provider data object
1102, virtual world data object 1103, scene data object 1104,
and item 1105. The service provider, virtual world, and scene
data objects may correspond to the objects described with
respect to FIG. 10, and instances may also be represented as
securable objects. Items 1105 may represent items within a
virtual world, including items possessed by avatars, items
within scenes, buildings, structures, plants, animals, and
other components of a virtual world.

Securable objects may generally be considered as objects
that can be acted upon within a virtual world. Various actions
may be performed on securable objects, as defined by the
service provider, virtual world, scene, instance, or other
appropriate body. The types of actions understood within a
virtual world may differ across different types of securable
objects. For example, the action “take” may be available for
small objects such as pencils, but not available for large
objects such as trees. Similarly, the permitted actions may be
relative to one or more avatars or objects or avatar or object
types. For example, the action “take” may be available for a
tree when an avatar driving a tractor attempts the action, but
unavailable for an avatar without a helper object of some kind.

In an embodiment, one particular type of securable object
is entity 1106. An entity may represent a user or other indi-
vidual capable of taking actions within the virtual world.
Examples of entities may include user account 1107, persona
object 1108, and avatar object 1109. Because entities are
types of securable objects, they may be acted upon just like
any other securable object. In an alternate embodiment, enti-
ties may not be a type of securable object.

When an avatar (or other entity) interacts within a virtual
world, the avatar may take actions within that world. For
example, an avatar may acquire a pencil lying on the ground
in a virtual world, by executing a “take” action on the pencil.
Such an action may be represented as a data request presented
to a service provider via a network protocol or other commu-
nication system, and the action may be translated to a graphi-
cal representation by the service provider and/or client soft-
ware executing on the user’s computer.

In some cases, it may be desirable to restrict the types of
actions that may be taken within a virtual world. Thus, in an
embodiment, the service provider implements a process of
“permissions resolution” to determine which actions may be
taken, by which entities, and on which securable objects. In
another embodiment, certain objects may be generated and
utilized entirely locally on the client and either not transmit-
ted to other clients, or transmitted in summary form to other
clients. For example, if a user has a grass lawn, other clients
may simply be told to generate a “grass lawn” without regard
to replicating specific condition aspects of the lawn, such as
footprints or imperfections. In some instances, such “sum-
mary form” transmission may be used to permit users to
specify what kinds of generic objects they prefer (e.g. what
type of grass), and/or to localize such common objects, as for
example by having the summary form item “night sky” reflect
the appearance of the night sky as seen from each user’s
geographic location.

FIG. 12 is a block diagram of a data structure representing
permissions, as used in an embodiment. The data structure
may be stored by a service provider and used in the process of
permissions resolution. The data structure may be stored on
computer-readable media such as a hard drive, SSD, tape
backup, distributed storage, cloud storage, and so on, and may

US 8,621,368 B2

31

be structured as relational database tables, flat files, C struc-
tures, programming language objects, database objects, and
the like. In various embodiments, additional elements may be
included, some elements may be removed, and/or elements
may be arranged differently from what is shown.

Permission record 1201 may be associated with one or
more “gatekeeper” objects 1202. A gatekeeper is an object
that has authority or jurisdiction to determine whether an
action will be permitted. In an embodiment, gatekeepers may
include the service provider, virtual world, scene, and/or
instance in which an avatar takes an action. Thus, each gate-
keeper may have an influence on whether the avatar is per-
mitted to take the desired action, as described below.

Permission record 1201 may further include entity pattern
1203, action pattern 1204, and/or securable pattern 1205.
These patterns may be used to determine whether a particular
permission record relates to an action being taken. In an
embodiment, a permission record is applicable to an action
when the entity attempting the action matches entity pattern
1203, the action being attempted matches action pattern
1204, and the securable object to be acted upon matches
securable pattern 1205. The patterns may identify particular
objects or rules used to match objects. The patterns may
include, for example, regular expressions, categories, execut-
able code, and the like.

Permission record 1201 may further include permission
indicator 1206. The permission indicator may identify
whether an action matching the patterns is to be allowed or
disallowed. In an embodiment, permission indicator 1206
may have a value of “yes,” “no,” and “inherit.” The last of
these options may be used to indicate that the permissibility of
the action is to be derived from another gatekeeper, as
described below.

Permission record 1201 may also include an “overridable”
flag 1207. This flag may be used to determine whether further
gatekeepers are to be consulted in determining whether the
action is to be permitted. For example, a service provider may
include a permission record that permits a certain action. If
the permission record is overridable, then the permission
resolution process may further consult the virtual world
within that service provider to determine whether the action is
permitted, but if the permission record is not overridable, then
the permission resolution process may conclude the resolu-
tion process.

FIG. 13 is a flowchart of a process of resolving permission
for an entity to take an action, as used in an embodiment. The
process may be performed, for example, on a service provider
system. In various embodiments, additional blocks may be
included, some blocks may be removed, and/or blocks may be
connected or arranged differently from what is shown.

At block 1301, the service provider identifies an entity
attempting to take an action on a securable object. The
attempt may be identified in response to a request submitted
by a user to have that user’s avatar or other entity take the
desired action.

Atblock 1302, a hierarchy of gatekeepers is identified. In
an embodiment, the hierarchy of gatekeepers includes the
service provider on which the entity is acting, the virtual
world in which the entity is acting, the scene in which the
entity is acting, the instance in which the entity is acting, and
the securable object on which the entity is acting. In alternate
embodiments, other gatekeepers may be included, a subset of
the gatekeepers may be used, and/or the gatekeepers may be
differently ordered.

The system then proceeds to resolve permissions for the
gatekeepers. At block 1303, the highest gatekeeper in the
hierarchy is selected. The permissions records associated

20

25

30

35

40

45

50

55

60

65

32

with the gatekeeper may then be matched against the entity,
action, and securable object of block 1301. If no matching
permission record is found, then the system proceeds to con-
sider further objects in the hierarchy at block 1305.

If a matching permission record is found, then the permis-
sion identifier of the matching permission record may be
applied and recorded to an internal buffer, at block 1306. If
the permission identifier is “inherit,” then the existing value of
the internal buffer may be retained, so that the previous per-
mission setting is inherited. If the permission record is over-
ridable at block 1307, then the system proceeds to consider
the next gatekeeper in the hierarchy, at block 1305.

When no gatekeepers remain for consideration at block
1305, or when a non-overridable permission record is applied
at block 1307, permission resolution may proceed to block
1308, at which the last recorded permission from block 1306
may be applied.

In some cases, no permission may have been recorded at
block 1306. For example, it is possible that none of the gate-
keepers had matching permissions records, or all of the
matching permissions records had permissions identifiers of
“inherit.”” In such cases, a default permission may be applied.
Alternately, certain gatekeepers may include “catch-all” per-
missions records to ensure that at least one permissions
record always matches, or a “catch-all” gatekeeper may be
included at the end of the hierarchy.

Variations of the above algorithm may be applied in some
embodiments. For example, a gatekeeper may include a per-
mission record directing the gatekeeper to consult other gate-
keepers and/or permissions records, so that the hierarchy of
gatekeepers from block 1302 need not be strictly followed.
For example, a virtual world may include a permission record
indicating that the permission records of the securable object
areto be consulted immediately, rather than considering those
of'the virtual world, scene, and instance. This could be used to
implement, for example, a service provider policy that the
interests of securable objects being acted upon are to be
obeyed in all cases, regardless of the implementation of par-
ticular worlds and scenes.

FIG. 14 is a block diagram of an example gatekeeper hav-
ing associated permissions records, as used in an embodi-
ment. The diagram is intended to be merely exemplary and
not indicate a required configuration of a particular gate-
keeper or type of gatekeeper.

Gatekeeper 1401 includes three permission records. The
first permission record 1402 indicates that an entity named
“Bob” is not permitted to take the action of hitting securable
objects that are trees. Thus, if permission record 1402 is
applied, then the entity named “Bob” would be automatically
prevented from attempting to hit trees. Because permission
record 1402 is overridable, it may be possible that another
gatekeeper further down on the hierarchy does permit Bob to
take that action.

The second permission record 1403 indicates that entities
who are of the type “wizard” are permitted to take the action
of casting spells on any securable object. This permission
record is indicated as not overridable, so other gatekeepers
further down on the hierarchy may be unable to prevent this
permission record from taking effect. Note that the entity
pattern field in record 1403 does not indicate a particular
entity but rather a class of entities, thus greatly increasing the
expressive power of permission records.

The third permission record 1404 indicates that where an
entity attempts to take the action of hitting securable objects
that are plants, the permission value is to be inherited from a
previous gatekeeper.

US 8,621,368 B2

33

In an embodiment, each gatekeeper may delegate some or
all tasks with regard to some or all avatars or objects to other
gatekeepers on a permanent, temporary, or revocable basis.

In an embodiment, permission records are considered in a
particular order, which may be defined by gatekeeper 1401 or
an appropriate administrator or user of the system. For
example, it will be observed that if an entity named “Bob”
attempts to hit a tree, then permission records 1401 and 1404
would both match. Since record 1401 occurs first, it will take
precedence. Alternate embodiments may include different
algorithms for determining which of several permission
records will take precedence.

It may seem that an equivalent result could be obtained by
omitting permission record 1404 entirely from gatekeeper
1401, since inheritance of a previous gatekeeper’s permission
setting may be automatic where a gatekeeper has no matching
permission records. However, the ability to specify inherited
permissions may be used, for example, to prevent another
permission record from overwriting the previous gatekeep-
er’s setting. For example, gatekeeper 1401 may contain a
fourth permission record to deny anyone from hitting any
securable object. In such a case, permission record 1404 may
be used to allow plants to be hit when such an action is
permitted by a previous gatekeeper.

FIG. 15 is a diagram of an example of permission resolu-
tion across multiple gatekeeper objects, as used in an embodi-
ment. The diagram is intended to be merely exemplary and
not indicate a required process of permission resolution. The
example of FIG. 15 relates to an attempt by an entity to take
some action on some securable object.

In the example of FIG. 15, the hierarchy of gatekeepers
includes the service provider, the virtual world, the scene, the
instance, and the securable object. At block 1501, the service
provider’s permission records are consulted to determine
whether an action is permitted. In the example of FIG. 15, no
matching permission is found, so the system proceeds to the
next gatekeeper on the hierarchy.

At block 1502, the virtual world’s permission records are
consulted, and it is determined that the virtual world allows
the attempted action. Thus, the current permission setting of
“allow” may be recorded. Since the virtual world indicates
that the permission is overridable, the system proceeds to the
next gatekeeper in the hierarchy.

At block 1503, the scene’s permission records are con-
sulted, and it is determined that the scene inherits the permis-
sion setting. Thus, the permission setting of “allow” from
block 1502 is retained as recorded. Since the scene indicates
that the permission is overridable, the system proceeds to the
next gatekeeper in the hierarchy.

At block 1504, the instance’s permission records are con-
sulted, and it is determined that the instance denies the
attempted action. Thus, the permission setting of “allow,”
retained from block 1503, is replaced with the setting “deny.”
Since the instance indicates that the permission is not over-
ridable, the system concludes permission resolution. In par-
ticular, the securable object’s permission records 1505 are not
consulted, so the attempted action is denied despite the fact
that the securable object would have allowed it.

Executable Scripts

Virtual world service providers may include features
enabling executable scripts to be uploaded and run on the
service providers. These scripts may be used to automatically
perform various tasks such as performing actions, moditying
objects, changing appearances, enabling additional function-
ality, and the like.

Server-side scripts, as described below, are distinguished
from client-side scripts, which operate on client devices. Such

20

25

30

35

40

45

50

55

60

65

34

client-side scripts may be used to manipulate the graphical
representation of the virtual world as displayed to a user on
the client device. Client-side manipulations generally do not
affect state or data on the service provider. However, a client-
side script may be created to send requests to the service
provider in an automated fashion. Client-side scripts may
further be created to execute server-side scripts and/or take
other actions through an application programming interface,
network protocol, or other communication method offered by
the service provider, thereby affecting state or data on the
service provider. The service provider may include software
components to detect such client-side scripts and possibly
disable them or otherwise reduce their effectiveness.

Server-side scripts on a virtual world service provider may
provide a variety of functions. They may be developed by
software developers and distributed to users of the virtual
world service provider in order to provide those users with
enhanced experiences. Scripts may be distributed in standal-
one form and installed by users, and/or scripts may be
bundled with objects, items, and other elements on the virtual
world service provider. In an embodiment, scripts may be
distributed and/or sold through a virtual store, for real and/or
virtual currency, goods or items.

Scripts may operate on a service provider by manipulating
data structures on the service provider. Accordingly, the ser-
vice provider may provide a consistent interface for repre-
senting components of digital worlds, so that the scripts may
operate. In an embodiment, the components of digital worlds
are represented in a tree-like structure similar to the Docu-
ment Object Model used to represent HTML or XML docu-
ments. Examples below are presented in variants of XML
markup to represent the document trees, but it will be under-
stood that the components of digital worlds may be imple-
mented in a variety of formats and data structures.

FIG. 16 is an example of a layout of an instance of a scene
in a virtual world, as used in an embodiment. The diagram is
intended to be merely exemplary and not represent a required
arrangement of items in a scene or instance.

The graphical representation of the instance 1601 includes
a piano 1602, a sofa 1603, and a plant 1604. The objects are
represented graphically in the user interface 1601. In an
embodiment, the objects may be represented in three dimen-
sions. Internally within a service provider, the instance may
be represented as a data structure, such as the data structure of
Table 2 below.

TABLE 2

<scene name="room1”>
<item type="piano” location="5,5" />
<instance id="1">
<item type="“sofa” location="30,30" size="*15" />
<item type="“cushion” color="red” />
<item type="“cushion” color="brown” />
<fitem>
<item type="plant” leaves="10" location="5,40" />
</instance>
<instance id="2">

</instance>
</scene>

The code representation indicates the objects in the scene
and instance, as well as various attributes and sub-objects. For
example, each of the objects in the listing includes a location
attribute, which may correspond with the location of the
object in the scene or instance.

Certain objects may be specifically associated with the
scene or instance. For example, in the above listing, the piano

US 8,621,368 B2

35

object is associated with the scene, while the sofa and plant
objects are associated with the instance. Thus, other instances
of'the same scene may or may not include the sofa or plant, but
they would include the piano by default. In an alternate
embodiment, default attributes of the scene may be main-
tained under a separate subtree within the <scene> data (such
as a <default-layout> tree), and newly created instances may
copy the objects from the default attributes upon creation.

Scripts may then be attached to parts of the document tree,
in an embodiment. Scripts may be implemented as interpreted
code, such as Javascript ("™™M) code, and be embedded within
the document tree. The Table 3 below illustrates a sample
document tree with script embedded at various levels of the
tree structure.

TABLE 3

<scene>
<instance>
<object 1>
<script name="“script 1" params="int, string”>
[script code]
</script>
<script 2>...</script>
</object>
<object 2>
<script 3>...</script>
<object 3>
<script 4>...</script 4>
</object>
</object>
<script on instance>...</script>
</instance>
<script on scene>...</script>
</scene>

In the example of this table, a scene includes an instance
with objects 1 and 2, and object 2 includes a sub-object 3.
Object 1 includes two scripts, 1 and 2; object 2 includes script
3, and object 3 includes script 4. Furthermore, the instance
has an additional script, and the scene has an additional script.

Scripts may execute various functions to manipulate the
document tree in which they are placed. For example, a script
may add nodes, remove nodes, manipulate attributes of
nodes, reorder nodes, and so on. It may be desirable to limit
the extent to which a script is able to modify the document
tree, for security and usability reasons. For example, the
system may be configured to enable a script to be attached to
an object, so that the script may manipulate the object appear-
ances, but not manipulate the appearance of avatars or other
objects in the scene.

In an embodiment, scripts are limited to modifying the
document tree of the node that is the parent to the script, and
associated sub-nodes. In the example above, scripts 1 and 2
would be permitted to modify object 1, but not objects 2 or 3,
and not the instance or scene generally. Script 3 would be able
to modify objects 2 and 3, and script 4 would be able to
modify object 3 but not object 2 (as the parent of script 4 is
object 3). In this embodiment, the instance script would be
able to modify the instance and all objects therein, but not be
able to modify the scene. This may be useful for an adminis-
trator or leader of the instance, to rearrange or clean up the
instance. The scene script would be able to modify the scene,
as well as all instances and objects therein. This may be useful
for making global changes across all instances of a scene that
are in operation.

It may nevertheless still be desirable for a script attached to
one object to be able to affect another object in certain ways.
For example, a dog may include a script that causes the dog to
run around within a scene. This may cause the dog to even-

10

20

25

30

35

40

45

50

55

60

65

36

tually crash into an object such as a table. Since the script is
attached to the dog and not the table, the script alone may not
be able to modify the table object to reflect that the table has
been knocked over.

Thus, in an embodiment, the system provides an inter-
script messaging service enabling scripts to trigger execution
of other scripts. In the previous example, when the dog script
causes the dog to crash into the table, the dog script may
invoke a script on the table, causing the table to perform a
“crash receipt” function. Such a function may consequently
cause changes in the table object, such as falling over or
breaking into pieces.

In one embodiment, the conversion of objects from one
type to another and/or conversions at boundary events, and/or
entrance to an area may provoke a script compatibility check
to determine whether introduction of an object may conflict
with another script or scripted object. Using the above
example, if an avatar attempts to enter a room with his dog, a
query may be made as to whether there are objects in the room
that are not capable of receiving messages from a “dog”
script, such as “dog ran into you.” If| in the above example, the
table was not capable of receiving such messages, entry may
be denied to the dog, certain functionality of the dog may be
disabled or limited, and/or certain incompatible objects may
be changed, such as by making the table “bolted to the
ground.” In another embodiment, objects may be associated
with scripts intended for operation by other objects, such as a
dog thatis capable of delivering a “dog ran into you™ script for
one or more types of other objects. In such a case, entry of the
dog may be conditioned upon successful transmission of such
script.

Since the script on the table object is associated with the
table, it may be possible for the designer of the table to
implement scripts that perform unexpected actions. For
example, when the dog crashes into the table, the invoked
script on the table may cause the table to double in size. In an
embodiment, the system may be configured to detect and
prevent such unexpected actions. For example, the system
may include assertions of expected behavior when scripts are
executed, and prevent scripts from causing changes that vio-
late those assertions of expected behavior. In an embodiment,
the assertions may be programmed through scripts on
instances, scenes, virtual worlds, and/or service providers.

FIG. 17 is a flowchart of a process of executing scripts, as
used in an embodiment. The process may be performed by a
service provider. In various embodiments, additional blocks
may be included, some blocks may be removed, and/or blocks
may be connected or arranged differently from what is shown.

Atblock 1701, the system identifies a script to be executed.
The execution of the script may be invoked by another script,
by a user, by an automated process, or the like. At block 1702,
the system determines the parent object of the script, and
enables the script to modify the parent object at block 1703. In
executing the script, the system may observe the execution to
prevent modifications outside the parent object and/or to pre-
vent undesirable modifications.

Atblock 1704, the system receives a message directed to an
external script. The message may be invoked by performing a
special function call to the system, identifying the object and
script to be invoked. In an embodiment, the message may
further include one or more parameters for the external script.
The parameters may be matched to the script being called. For
example, as shown in the above code listing, script 1 takes two
parameters, an integer and a string. In an embodiment, the
system raises an error if the proper parameters for the external
script do not match the parameters provided in the message.

US 8,621,368 B2

37

At block 1705, the system determines authorization to
execute the external script. Scripts may be blocked from
calling external scripts for a variety of reasons. For example,
a script may be prevented from calling another script located
in a different instance, scene, virtual world, and/or service
provider. Additionally, a script may be prevented from calling
another script based on the permissions system described
previously. In an embodiment, the call to the external script
may be in the form of an action, so that the permissions
resolution process may be performed.

If'the script is authorized to call the external script at block
1705, then at block 1706 the system executes the external
script, repeating the process at block 1701 on the external
script. In some cases, such as where the external script is
located at a different service provider, the external script may
be executed by a different service provider or system.

Due to the recursive nature of execution of scripts, it is
possible that an erroneously or maliciously designed script
may loop indefinitely, attempt to call an unreasonable number
of external scripts, or otherwise delay or prevent normal
execution of the virtual worlds system on the service provider.
Accordingly, in some embodiments, the service provider may
implement resource limits, such as time and/or memory usage
limits, to prevent scripts from unboundedly executing. The
service provider may additionally implement a system that
charges real or virtual currency, goods or services in exchange
for execution time.

Service Provider System

FIG. 18 is a block diagram of a service provider system and
related computer systems, as used in an embodiment. The
service provider system may be used as service provider 901
of FIG. 9, for example. In various embodiments, additional
blocks may be included, some blocks may be removed, and/or
blocks may be connected or arranged difterently from what is
shown.

Service provider system 1801 may include several com-
puter systems. The included computer systems may be
housed on a single device and/or separate devices, and each of
the computer systems may similarly comprise multiple com-
puting devices, as in distributed or cloud computing. The
computer systems, when housed on separate devices, may be
connected by a local or wide area network, and/or by other
communication systems.

One component of service provider system 1801 may be
service provider entrypoint 1802. The entrypoint may be a
server or other device with a network connection to external
networks, providing an outward-facing interface for external
clients such as users. In an embodiment, external network
requests directed to service provider system 1801 are initially
directed to entrypoint 1802. In an embodiment, multiple
entrypoints 1802 are included to facilitate distributed com-
puting and handle high user loads.

The entrypoint system 1802 may provide various features
to the service provider system 1801. For example, it may
provide 2-dimensional rendering services, allowing tradi-
tional web-based browser clients to access content offered by
the service provider system without requiring 3-dimensional
rendering capabilities. Such requests may be detected, for
example, as standard HTTP web requests, and the entrypoint
system 1802 or other computing system may respond with
HTML, XML, plain text, RTF, streaming audio/video,
images, and/or other appropriately formatted content. By
offering 2-dimensional rendering, the content, including
3-dimensional virtual worlds content, may be indexed by
search engines and accessed by those with disabilities or
using computing systems that impair usage of 3-dimension-
ally rendered worlds.

20

25

30

35

40

45

50

55

60

65

38

Instance hosts 1803 operate instances of virtual worlds, as
described above. Each instance host 1803 may serve a single
instance or multiple instances, in various embodiments.
Instance hosts may be separate computing devices, virtual
servers, or modules operating on a server. Some or all of the
instance hosts may operate on the same computing device as
entrypoint 1802.

Entrypoint system 1802 may further provide load balanc-
ing services to service provider system 1801. For example,
entrypoint 1802 may direct virtual worlds users to a particular
instance host 1803, depending on factors such as the configu-
ration of the service provider, virtual world, and/or scene; the
number of users in each instance; characteristics of the
requesting user and/or request such as special location iden-
tifiers requesting a particular instance; the hardware capabili-
ties and capacities of the instance hosts; and the like. Entry-
point 1802 may further start and/or shut down instance hosts
1803 based on these and other factors.

The entrypoint 1802 and/or instance hosts 1803 may fur-
ther communicate with service provider database 1804. The
database may maintain information such as virtual worlds
data, scene data, instance data, user data, avatar data, and so
on. The database may include data structures such as those
shown in FIGS. 10-12, as well as other data structures as
described throughout this specification, such as virtual world
documents in the DOM format described previously.

Service provider system 1801 may further communicate
with external entities, for example via network 1807. Root
server 1805 may provide general services across multiple
service providers, such as user accounting services, account-
ing of real and/or virtual currency, avatar transfer services as
described with respect to FIG. 3, and the like. Thus, service
providers 1801 may communicate with root server 1805 to
use these services. The communications may be encrypted
and/or authenticated to ensure that unauthorized users are not
able to illicitly obtain information from root server 1805.

Service provider system 1801 may further communicate
with users 1806 to provide virtual worlds services in 2 and/or
3 dimensions, based on the client software and other prefer-
ences of user 1806. Users may additionally communicate
with root server 1805 for various purposes, such as viewing
directories of operational service providers and managing
accounts and/or finances.

Connection to Real World Data

Service provider system 1801 may also communicate with
external data sources 1808. These sources may enable service
provider system 1801 to link real-world data into the virtual
world. Objects, graphics, avatars, and/or virtual spaces may
use virtual data obtained from external data sources 1808 or
other sources. For example, one scene in a virtual world may
be a virtual store where avatars can browse around and shop
for products. The store may include virtual representations of
actual products, drawn from external data, and the prices and
availability of the products may be tied to an actual store’s
inventory, so that avatars viewing products within the store
have access to actual purchasing information. In an embodi-
ment, the external data is used to update content on the service
provider system 1801 in real time.

In an embodiment, service provider system 1801 is further
able to transmit data to external systems. For example, in the
virtual store described above, an avatar may acquire an item in
the virtual world, such as by purchasing it with real or virtual
currency. In such a situation, the service provider system
1801, through the entrypoint 1802, an instance host 1803,
and/or another mechanism, may send a command or instruc-
tion to an external system, ordering a corresponding product,
so that the actual product may be shipped to a person associ-

US 8,621,368 B2

39

ated with the avatar. Other actions that service provider sys-
tem 1801 may take on external systems may include financial
transfers, property transfers, posting of content to external
sites such as social networks, sending emails, and so on.

Communications between the service provider system
1801, external data sources 1808, and other external systems
opens the possibility that a security compromise on one of the
systems may affect the integrity of another. Accordingly,
service provider system 1801 may include firewalls and/or
other security measures to control security breaches from
external systems. Additionally, service provider system 1801
may increase security by restricting communications to cer-
tain protocols, using authentication and encryption, and/or
validating users, such as with two-factor authentication.
Namespaces and Two-Dimensional Representations

Three-dimensional representations of virtual worlds may
be displayed on specialized client software configured to
render the three-dimensional representation. Service provid-
ers and other systems may further serve content to traditional
two-dimensional browsers and related software. Providing
both representations may have several benefits, including
backwards compatibility, search engine indexing capabili-
ties, accommodations of disabilities, and the like.

In order to provide 2-dimensional or 3-dimensional ser-
vices in appropriate situations, some embodiments include
separate namespaces for differentiating between services.
Thus, clients capable of rendering 3-dimensional virtual
worlds can be served appropriate content different from that
served to clients requesting 2-dimensional content.

FIG. 19 is a flowchart of a process of serving content based
on namespaces, as used in an embodiment. Portions of the
process may be performed by service provider systems 1801
of FIG. 18, including entrypoint 1802 and instance host 1803.
In various embodiments, additional blocks may be included,
some blocks may be removed, and/or blocks may be con-
nected or arranged differently from what is shown.

Atblock 1901, a user sends a request to a service provider.
The request is received by the service provider entrypoint at
block 1902. The request may identify a particular scene that
the user wishes to enter. The request may include further
information such as avatar information, authentication infor-
mation, and the like. The request may be sent in a single
network transaction or divided among multiple network
transactions.

In an embodiment, the request is formatted as a Uniform
Resource Locator (URL). The request may take on the fol-
lowing form:

[protocol]://[service provider]/[scene]?[query]#[location]

The [protocol] element may identify the form of commu-
nication in which the request is communicated at block 1901.
In an embodiment, the protocol may be “http,” indicating a
standard Web request, or “vww,” indicating a virtual world
web request. Other protocol identifiers may be used and
understood by service providers. The [service provider] ele-
ment may identify the network location of the service pro-
vider, for example by domain name or IP address. The [scene]
identifier may identify the particular scene on the service
provider to be accessed. In an embodiment, scenes may be
organized in a hierarchical structure, such as by virtual worlds
within a service provider as described previously, in which
case the [scene] identifier may also be hierarchically struc-
tured, for example by using hierarchical elements separated
by a character such as a slash.

The [query] identifier may include parameters relating to
aspects of the scene to be accessed. The identifier may take
the form of one or more key-value pairs, each key and value
being joined by an equals sign, and the pairs being joined

20

25

30

35

40

45

50

55

60

65

40

together with ampersands, for example. In an embodiment,
one such parameter may identify a particular instance of a
scene to be joined by the requesting user. This may be used,
for example, to enable the user to join an instance where other
users of interest, such as the users’ friends, are present. The
service provider may take the request for the instance into
account, but it may choose to disregard the selected instance,
for load balancing, capacity, and/or other reasons. By provid-
ing the ability for users to access particular instances of
scenes by URL, the service provider may thus allow users to
publish locations (for example, on websites, social media,
email communications, and so on) so that other users can join
the same instance by accessing the same URL.

The [location] identifier may identify a place in the scene to
be accessed by the user. For example, the user may wish to
appear on one side of a room in a scene, and may specify the
location using this identifier. In an embodiment, the identifier
may correspond to an anchor tag inserted into the Document
Object Model. For example, the Table 4 below illustrates a
sample DOM related to the scene shown in FIG. 16:

TABLE 4

<scene name="room1”>
<item type="piano” location="5,5" />
<item type="sofa” location="30,30" size="15" />

</item>
<item type="plant” leaves="10" location="5,40">

</item>
</scene>

By accessing a URL with a location identifier of “#sofa,” the
user’s avatar may be placed on the sofa upon entering the
scene. Similarly, by accessing a URL with a location identi-
fier of “#plant-right,” the user’s avatar may be placed to the
right of the plant.

In various embodiments, the URL may be structured or
organized differently, as appropriate to the configuration of
the service provider. Additionally, the URL may represent the
location to be accessed as viewed on the client computer,
while components of'the URL may be transmitted in a differ-
ent form, as is done in HTTP, for example.

At block 1903, the entrypoint determines whether the
request is a virtual world client request. This determination
may identify whether the client is requesting 2-dimensional
or 3-dimensional content. The request may be made based on
anumber of factors. For example, the protocol identifier may
distinguish such requests, where an HT'TP request indicates a
request for 2-dimensional content, while a VWW request
indicates a request for 3-dimensional content. The distinction
may additionally or alternatively be made based on an iden-
tifier of the client software making the request, such as a
User-Agent header.

In one embodiment, the capabilities of the client and/or the
bandwidth available to the client are utilized either on the
client end, in crafting a User-Agent header or similar request
modifier, or on the server end, in determining what kind of
data to serve. In one implementation, content less demanding
than the full 3D content, but more than the 2D content, may be
transmitted in order to maximize the user experience by
avoiding exceeding capabilities of the user machine or band-
width.

Ifthe entrypoint determines that the request is for 2-dimen-
sional content, then at block 1904 the service provider may
transmit standard web content to the requesting user. The
standard content may include static content, such as general

US 8,621,368 B2

41

information relating to the service provider and virtual worlds
therein. It may additionally or alternatively include dynamic
content, such as information relating to the virtual worlds
and/or 2-dimensional renderings of scenes in the worlds. In
an embodiment, the 2-dimensional renderings are generated
in real time. The renderings may also be videos and/or stream-
ing content, enabling viewers of the 2-dimensional content to
watch live content of activities in the virtual worlds. The
renderings may be determined by the service provider in
accordance with particular rules for translating 3-dimen-
sional content into two dimensions. These determinations
may be controlled by content, such as “alt” tags, within the
internal representation of scenes and/or instances.

The 2-dimensional rendering may further include textual
content describing the activities in the virtual worlds. The
textual content may be manually generated by operators or
users on the service provider. Additionally or alternatively,
the textual content may be automatically generated by graphi-
cal analysis of metadata within the virtual worlds, possibly
producing a live transcript or feed of activities. By providing
textual content, the service provider may facilitate automatic
search engine indexing processes, thereby providing a mea-
sure of search engine optimization (SEO) and encouraging
outside individuals to visit the virtual world.

In one embodiment, textual content is provided in a manner
suited to automated reading for the visually impaired, includ-
ing transmission of the textual content in audio format. Such
content may thus be formatted in specific ways, such as for
screen-reader software, possibly based on user preferences.

The 2-dimensional rendering may further include informa-
tion to facilitate entry into the 3-dimensional virtual worlds.
For example, the content may include a link to the 3-dimen-
sional representation (such as a “vww://”” protocol link). The
content may further include a link to software, such as a
desktop application, mobile device application, browser plu-
gin, and so on, enabling the client computer to view 3-dimen-
sional content.

Information in the 2-dimensional content may further
allow for automatic access to 3- dimensional content. For
example, a link to the 3-dimensional representation may be
included in a <META>tag, a Javascript ("™™) or other refresh
command, or the like. The client computer’s browser may be
configured to recognize such links and automatically execute
an appropriate virtual worlds browser to access the linked
location. In an embodiment, the browser may display the
3-dimensional content internally within its windowing sys-
tem, so that a user is able to flip back and forth between the
2-dimensional and 3-dimensional content.

The 2-dimensional content may further include interactive
features enabling the user to interact with the virtual worlds
without having to view them directly. For example, the 2-di-
mensional content may include a chat function, enabling the
user to communicate with others within the virtual world. In
such an embodiment, communications spoken or otherwise
made within the virtual world may be translated to text in the
chat function so as to be viewable by the user accessing
2-dimensional content, and text entered into the chat function
may be spoken or otherwise presented in the 3-dimensional
representation of the world, to other avatars. In an embodi-
ment, the 2-dimensional representation includes audio com-
munication, such as Voice-over-IP, enabling further commu-
nication with avatars in the 3-dimensional representation.

Additionally, a user accessing the 2-dimensional represen-
tation may be represented by an avatar in the 3-dimensional
representation, so that the user is visible to other avatars.
Often the user accessing the 2-dimensional representation
will have limited access or functionalities, such as not being

20

25

30

35

40

45

50

55

60

65

42

able to move or communicate as easily. To indicate this, in an
embodiment, the user accessing the 2-dimensional represen-
tation may be indicated as a special avatar, such as a glowing
sphere, distinguishable from other avatars (who may be rep-
resented, for example, like human figures). In one embodi-
ment, the representation of the avatar tracks the limitations of
the user operating the avatar, such as by making an avatar
using a 2D browser appear flat rather than rendered in 3D.

Both the 2-dimensional representation and the 3-dimen-
sional representation may, in various embodiments, be con-
figurable to meet user preferences. For example, a view pref-
erence may indicate a particular 2-dimensional
representation desired by the user, such as an overhead rep-
resentation, a representation from a particular vantage point
in the scene, or the like. Other preferences may determine the
language, size, appearance, verbosity, and other information
presented therein. The preferences may be indicated by the
user and stored in association with a user account, a cookie on
the user’s browser, and the like. The preferences may addi-
tionally or alternatively be determined by the service pro-
vider, for example based on default preferences and/or pref-
erences relating to similar users such as geographically
similar users, friends of the user, users with the same lan-
guage, and the like.

The 2-dimensional content, as described above, may be
received by the user at block 1905. As described above, the
content may optionally include certain tags and/or data
enabling automatic transitions to the 3-dimensional content,
and the user’s browser or other software may be configured to
detect these tags and/or data, for example through a browser
plugin. At block 1911, the browser plugin or other software
detects such tags and/or data, and invokes the virtual world
client, identitying the appropriate URL or other identifier to
be accessed by the virtual world client. Inresponse, the virtual
world client initiates a second request to the service provider
at block 1901.

If, at block 1903, the entrypoint determines that 3-dimen-
sional content is to be served to the user, then at block 1906
the service provider creates and/or selects an instance host
and/or instance of the requested scene, to service the user. The
instance host and/or instance may be selected based on factors
applied by the entrypoint as described above, such as load
balancing, avatar capacity of instances, requests for a particu-
lar instance in the URL, and the like. The service provider
may determine that a new instance is to be created, in which
case it may start up a new instance host as necessary. In some
embodiments, only one instance host may be used for a par-
ticular scene, in which case the instance host need not be
selected.

When the appropriate instance host is identified, then at
block 1907 the user is directed to access the instance host. In
anembodiment, the entrypoint sends a redirection message to
the user, identifying the location of the instance host to be
accessed, such as through a second URL. The URL may be
coded as a one-time URL or otherwise made accessible only
to that user, for example through session identifiers stored in
cookies, so that the user or other users are prevented from
bypassing the entrypoint and directly accessing the instance
host later. The entrypoint may alternately act as a proxy and
direct network traffic between the user and the instance host,
so that the user need not be aware of the particular instance
host being accessed or even be able to access the instance host
directly.

At block 1908, the user receives the direction to access the
instance host, and at block 1909, the user contacts the instance
host. The instance host responds, at block 1910, by enabling
the user to interact with the instance of the scene. In an

US 8,621,368 B2

43

embodiment, for further security precautions, the instance
host confers with the entrypoint or service provider database
to confirm that the user is authorized to interact with the
particular instance.

Object Cleanup

As described above, a virtual world may include multiple
instances of a scene, with each instance including objects and
other characteristics based on an initial layout of the scene. As
avatars interact with the instances, those objects and charac-
teristics may be modified, for example by being moved,
taken, destroyed, altered, added, or otherwise manipulated.
As a result, an avatar may enter a first instance of a scene and
then enter a second instance of the same scene, leading to a
potentially disconcerting appearance that the same “scene”
has drastically changed. Furthermore, in some embodiments,
instances of scenes may be overlaid through semitransparent
displays or other mechanisms, for example so that an avatar in
one instance of a scene may see all the avatars in other
instances simultaneously. If there are substantial differences
between the objects of the scene, then the discrepancies may
be visible to avatars and may detract from their experiences.

For example, it may be desired that certain actions occur
when avatars leave a region. For example, it may be desired
for a coffee shop scene to be cleaned up when all the avatars
have left (or all the avatars other than the shop staff have left).
Then, the region may revert (in whole or in part, depending on
the instructions each object has or the instructions the objects
inherit from other objects or the region) to a “clean,” previ-
ously held, or other state. In one application, this might be
similar to having a cleaning crew instantly clean a club once
the club’s last patron has departed. Optionally, the reversion
action may be manually triggered by the proprietor. Option-
ally, such a manual trigger may be operational only when
certain conditions (such as the absence of any avatars other
than those in certain categories, like owner of the facility) are
met. Such limitations may serve to prevent the virtual space
from disruptively being altered while users are still present.

Accordingly, in an embodiment, instances of scenes
include functionality to automatically “clean up” objects and
other characteristics to correspond with the original layout of
the scene. The cleanup procedures may be configured, as
described below, to appear natural or minimize the visibility
of the procedures, so that the cleanup procedures do not
appear abnormal within the virtual reality environment.

FIG. 20 is a flowchart of a process of cleaning up an
instance of a scene. The process may be performed, for
example, by service provider 1801 of FIG. 18, such as by an
instance host 1803. In various embodiments, additional
blocks may be included, some blocks may be removed, and/or
blocks may be connected or arranged difterently from what is
shown.

At block 2001, an instance of a scene is created within a
service provider. Multiple instances may be created, and they
may be displayed at block 2002. As explained above, the
instances may be graphically overlaid in 2-dimensional and/
or 3-dimensional representations, through partial transpar-
ency for example. Users may then manipulate instances at
block 2003, by adding, altering, and/or removing objects or
other characteristics within each instance. Accordingly, the
instances may have substantial differences from the original
layout of the scene.

At block 2004, an instruction to clean up one or more
objects or other characteristics in an instance is received. The
particular cleanup routines may be defined by the service
provider, virtual world, and/or scene. Some scenes may find
some or all discrepancies between instances to be acceptable,
in which case no cleanup would be required. Furthermore, the

20

25

30

35

40

45

50

55

60

65

44

timing of the instruction at block 2004 may be based on the
status of the instance. In an embodiment, the instruction is
sent when a defined minimum of avatars (such as zero ava-
tars) are present in the scene, so that cleanup activities are less
noticeable.

Upon receiving the instruction at block 2004, the system
determines whether the object to be cleaned up is in its origi-
nal position and/or other state at block 2005. Ifthe object is in
its original position and state, then the system proceeds to
block 2006 and ends the cleanup procedure for that object. It
may then proceed to cleanup another object or characteristic.
Additionally, a degree of variation may be acceptable for an
object in a scene, so that the determination at block 2005 may
be whether the object is in an acceptable position and/or state.

Ifthe system determines that the object is not in an accept-
able position at block 2005, then at block 2007, the system
determines a path for replacing the object and/or reinstating
its original condition. The object may be placed into its origi-
nal position, added, altered and/or removed. The path may
include a direction to move the object, an alteration to the
object’s appearance, a fade-in or fade-out of the object, and
the like. In one implementation, the “acceptable position”
may be determined as an average position of the similar
object in a plurality of other representations of the same
environment.

The path may further include an actor to cause the change.
The object may make the alteration automatically. For
example, a plant that needs to be moved across the floor may
be picked up and moved by an avatar or it may slide across the
floor on its own. In the case of automatic alterations, the
change may be made gradual, so that it is not easily noticeable
to observers. Additionally or alternately, a non-player char-
acter, such as a bot, may be introduced to effect the desired
change. For example, in a virtual restaurant scene, chairs
and/or tables may be moved, and the cleanup procedure may
include waiters, operated by automated scripts and/or pro-
grams, who replace the chairs and/or tables to their desired
locations.

The selected path for replacing objects may be based onthe
conditions of the instance as well. For example, where the
instance is crowded with avatars, the cleanup routine may be
more gradual, whereas when the instance is empty, the
cleanup may be faster. Additionally, the route along which the
replacement occurs may be selected based on where avatars
and/or other elements are located within the instance. To
calculate this path, algorithms such as Dijkstra’s algorithm
may be employed.

At block 2008, the object is moved and/or altered in accor-
dance with the path determined at block 2007. If further
alterations are to be performed, then the process returns to
block 2005 to continue adjustments until the desired state is
reached.

FIG. 21 is a sample user interface depicting an instance of
a scene to be cleaned up, as used in an embodiment. The user
interface may be operated in a virtual world browser, such that
a 3-dimensional representation may be shown rather than the
2-dimensional overhead view of FIG. 21.

The graphical representation of the scene 2101 may
include various elements such as plant 2102, piano 2103, sofa
2104, and/or door 2105. In accordance with cleanup proce-
dures, changes may be made to these objects. For example,
plant 2102 may be restored to location 2106. It may be auto-
matically slid across the floor (e.g., slowly over a period of
several minutes or even hours), faded out and faded into its
original location, and/or carried to its original position by a
non-player character such as a virtual butler or maid. The lid
of'piano 2103 may additionally be raised, and door 2105 may

US 8,621,368 B2

45

be closed. The timing of these changes may be based on
aspects of the scene and/or instance, such as the number of
avatars present, the time of day, the load on the instance host
and/or service provider, and the like.

Object Clouds

A virtual world may include a vast amount of information,
and avatars considering which world to visit may desire a
summary of that information to make that decision and/or for
other reasons. In non-virtual worlds situations such as HTML
content, structures such as tag clouds may be used to summa-
rize information.

Thus, in an embodiment, an object cloud may be presented
to avatars, to summarize the information relating to a virtual
world, scene, and/or instance. The object cloud may represent
various characteristics of the world, scene, and/or instance,
and utilize the 3-dimensional capabilities of the virtual world
system to effectively present the information.

Although the embodiments described herein relate to
information in a virtual world system, the object cloud
embodiments described herein need not be so limited. For
example, augmented reality systems may superimpose object
clouds onto the real world, such as through head-mounted
displays. Thus, real-world data may be used to construct
object clouds, in addition or alternatively to virtual world
data.

Object clouds may be displayed at various locations within
the virtual world system. For example, avatars may view
object clouds while in transit between virtual worlds. Object
clouds for a location may be presented on virtual trains or
buses headed to that location. Virtual travel agencies may
display object clouds of different locations, as advertisements
for those locations. Additionally, object clouds may be rep-
resented in 2-dimensional views, so that users without brows-
ers capable of rendering 3-dimensional views are able to
obtain similar information. Object clouds may also display
information about individuals: an avatar may view an object
cloud ofall of the avatar’s possessions and/or another avatar’s
possessions, for example. Such object clouds may be useful in
playing role-playing games, so that the avatar may quickly
determine what items are available to the avatar.

Indeed, object clouds may be implemented within the two
dimensional web. Rather than utilizing a word cloud, stock or
other photography may be substituted for the words, but the
relative size and placement of a traditional word cloud may be
retained, simply substituting the images for some or all of the
words. In addition to traditional word cloud elements, image
transparency may also be employed to represent the impor-
tance of an image to the data being summarized.

FIG. 22 is a sample user interface displaying a virtual world
object cloud, as used in an embodiment. The interface may be
presented on a virtual world browser and be based on data
provided by a service provider entrypoint and/or instance
host, for example. Although the representation in FIG. 22 isin
two dimensions, in various embodiments 3-dimensional rep-
resentations may be employed, which may have particular
advantages as described below.

Object cloud display 2201 includes several figures, such as
piano 2202, shopping icons 2203, cocktail icon 2204, and/or
car icon 2205. These icons may represent information relat-
ing to a particular virtual world, scene, and/or instance. For
example, the object cloud may indicate that, at a certain
virtual location, current events include piano music, shop-
ping, drinking, and car racing. The object cloud may indicate
current information, past information future information,
and/or any other information, and the particular information
displayed may be based on user selection.

20

25

30

35

40

45

50

55

60

65

46

The presentation of the object cloud may further convey
information about each of the displayed items, further
enhancing the information capacity of the object cloud. For
example, the size ofitems in the object cloud may indicate the
related event’s popularity, attendance, size, and/or other
attributes. In object cloud display 2201, the smaller shopping
icon 2203 may indicate that shopping is a less popular activity
at the particular location in the virtual world, while piano
music is a more popular option, as indicated by the large piano
icon 2202. Other aspects of the display, such as the position of
objects in the cloud, may provide further information. For
example, the car icon 2205 is placed closer to the viewing
avatar while the piano icon 2202 is placed further from the
avatar, which may indicate that car racing is nearer in distance
to the avatar’s current location. Size and/or location may be
used to convey other information such as time of events,
duration of events, cost, interest and/or popularity, for
example. Other dimensions of the cloud, such as height, hori-
zontal spread, motion, rotation, and the like may further indi-
cate information.

FIG. 23 is a flowchart of a process of constructing an object
cloud, as used in an embodiment. The process may be per-
formed, for example, by service provider system 1801 of FIG.
18, and it may construct an object cloud such as that shown in
FIG. 22. In various embodiments, additional blocks may be
included, some blocks may be removed, and/or blocks may be
connected or arranged differently from what is shown.

Atblock 2301, the system identifies objects in, and/or other
characteristics of, a real or virtual space. The rules for the
determination may be based on a selection by the user
requesting the object cloud, and the rules may include the
location of the identified objects and characteristics, the types
of objects and characteristics to be identified, the types of
aggregations to perform, and the like. Other items may be
identified, such as events, spaces, avatars, products, services,
and the like.

At block 2302, the identified objects may be aggregated
into groups. The aggregation enables the object cloudto actas
a summary for a large number of objects and/or characteris-
tics. The aggregations may be based on metadata and/or infor-
mation about the relevant objects and/or characteristics, such
as properties, tags, attributes, and the like. The aggregation
process of block 2302 may further identify information to be
used in constructing the object cloud. For example, where
events are identified at block 2301, the popularity and/or
attendance at the events may be identified at block 2302.

At block 2303, the groups identified at block 2302 are
summarized into graphical representations. This may include
mapping the groups onto icons, graphics, and the like. The
mapping may be based on a stored map of groups to icons
within the service provider database. The mapping may be
specific to service providers, worlds, scenes, and/or
instances.

At block 2304, the graphical representations are arranged
into a cloud. The arrangement procedure may determine
aspects such as the position, size, movement, rotation, and the
like, for the various graphical representations. This determi-
nation of aspects may be based, for example, on the attributes
identified at block 2302, as well as other information.

When the graphical representations have been arranged
into a cloud, then at block 2305 the constructed object cloud
is displayed and/or transmitted to the user for display. The
displaying process may include rendering a 3-dimensional
representation of the cloud into two dimensions, in the case
that the user is viewing the object cloud on a 2-dimensional-
capable viewer. In alternate embodiments, the object cloud
may be reduced to textual, audio, video, and/or other repre-

US 8,621,368 B2

47

sentations, for example to enable alternate displays and/or to
allow for search engine indexing of the object cloud.
Computing System

FIG. 24 is a block diagram of a computing system as used
in an embodiment. In various embodiments, additional
blocks may be included, some blocks may be removed, and/or
blocks may be connected or arranged difterently from what is
shown.

The computing system of FIG. 24 may be, for example, a
service provider, a root server, a virtual worlds server, an
entrypoint, an instance host, and/or another computing sys-
tem. Computing system 2401 may be one or more computing
devices, including computer hardware. Computing system
2401 may further include one or more modules which may be
implemented as executable instructions in software and/or
hardware such as circuitry. Computing system 2401 may
further include data storage systems such as hard disks, read
only memory, random access memory, flash memory, remov-
able storage media, and the like.

The computing system 2401 may be a general purpose
computer using one or more microprocessors, such as, for
example, an Intel® Pentium® processor, an Intel® Pentium®
II processor, an Intel® Pentium® Pro processor, an Intel®
Pentium® IV processor, an Intel® Pentium® D processor, an
Intel® Core™ processor, an xx86 processor, an 8051 proces-
sor, a MIPS processor, a Power PC (™) processor, a
SPARC (™) processor, an Alpha (™) processor, and so forth.
The computer may run a variety of operating systems that
perform standard operating system functions such as, for
example, opening, reading, writing, and closing a file. It is
recognized that other operating systems may be used, such as,
for example, Microsoft® Windows® 3.X, Microsoft® Win-
dows 98, Microsoft® Windows® 2000, Microsoft® Win-
dows® NT, Microsoft® Windows® CE, Microsoft® Win-
dows® ME, Microsoft® Windows® XP, Windows® 7,
Palm Pilot (™) OS, Apple® MacOS®, Disk Operating Sys-
tem (DOS), UNIX, IRIX, Solaris (™), SunOS (™),
FreeBSD, Linux®, or IBM® OS/2® operating systems. In
other embodiments, the computing system 2401 may be con-
trolled by a proprietary operating system. Conventional oper-
ating systems control and schedule computer processes for
execution, perform memory management, provide file sys-
tem, networking, I/O services, and provide a user interface,
such as a graphical user interface (“GUI”), among other
things.

The computing system 2401 may include one or more
central processing units (“CPU”) 2401, which may each
include one or more conventional or proprietary micropro-
cessor(s). The computing system 2401 may further include
one or more memories 2402, such as random access memory
(“RAM”), for temporary storage of information, read only
memory (“ROM”) for permanent storage of information, and/
or a mass storage device 2403, such as a hard drive, diskette,
or optical media storage device. The memory 2402 may store
software code, or instructions, for execution by the processor
2401 in order to cause the computing device to perform
certain operations, such as gathering sensor-related data, pro-
cessing the data with statistical and/or predictive models,
formatting data for user devices or other presentation, trans-
mitting data, or other operations described or used herein.

The methods described and claimed herein may be per-
formed by any suitable computing device, such as the com-
puting system 2401. The methods may be executed on such
suitable computing devices in response to execution of soft-
ware instructions or other executable code read from a tan-
gible computer readable medium or computer storage device.
A computer readable medium is a data storage device that can

20

25

30

35

40

45

50

55

60

65

48

store data that is readable by a computer system. Examples of
computer readable mediums include read-only memory, ran-
dom-access memory, other volatile or non-volatile memory
devices, CD-ROMs, magnetic tape, flash drives, and optical
data storage devices.

The computing system 2401 may include one or more
input/output (I/O) devices and interfaces 2404, such as a
keyboard, trackball, mouse, drawing tablet, joystick, game
controller, touchscreen (e.g., capacitive or resistive touch-
screen), touchpad, accelerometer, and/or printer, for example.
The computing system 2401 may also include one or more
multimedia devices 2405, such as a display device (also
referred to herein as a display screen), which may also be one
of the I/O devices 2404 in the case of a touchscreen, for
example. Display devices may include LCD, OLED, or other
thin screen display surfaces, a monitor, television, projector,
or any other device that visually depicts user interfaces and
datato viewers. The computing system 2401 may also include
one or more multimedia devices, such as speakers, video
cards, graphics accelerators, and microphones, for example.

In one embodiment, the I/O devices and interfaces 2404
provide a communication interface to various external
devices via a network such as network 103 of FIG. 1. For
example, the computing system 2401 may be electronically
coupled to the network 103 via a wired, wireless, or combi-
nation of wired and wireless, communication link(s). The
network 103 may allow communication with various other
computing devices and/or other electronic devices via wired
or wireless communication links.

Computing system 2401 may also include one or more
modules which may be implemented as hardware or software
including executable instructions. In an embodiment, com-
puting system 2401 includes virtual worlds module 2406,
accounts module 2407, and authentication module 2408. In
various embodiments, additional modules may be included
and/or any subset of these modules may be included. In vari-
ous embodiments, one or more of virtual worlds module
2406, accounts module 2407, and authentication module
2408 may be housed on separate computing devices con-
nected via a network or other communications system. In an
embodiment, each of the modules is housed on a separate
computing device thereby enabling different security settings
to be implemented for each of the modules. The modules
perform various processes and operations as described
throughout the specification.

Multilayer Component and Interface System

Aspects of the present technology may be conceptualized
as arranged in a system of distinct layers of components and
interfaces. Referring to FIG. 25, each layer within the system
offers components and interfaces that may be imported and/or
exported to a service provider 2504 and/or instance host
2506. A first layer (“Layer 1 ”, “L1 , “Layer 1 interface” or
“L.1 interface”) refers to generic or high-level components or
workflow interfaces used to service operations of the virtual
world system, and may be analogized to an operating system
for a computer. A second layer (“Layer 27, “L.2”, “Layer 2
component”, or “L.2 component”) controls instantiation of
specific components, i.e. three-dimensional scenes and
objects in the virtual world system, by exporting one or more
interfaces from the Layer 1 interface. The layer 2 component
may be implemented as a plug-in based on a Managed Exten-
sibility Framework (MEF), for example. A third layer (“Layer
3” or “L.3”) may be used to refer to specific instances of the
virtual world system wherein one or more clients 2508 par-
ticipate and control events and objects inside a modeled three-
dimensional scene.

Layer 1 can include functions which define, create, and
maintain entities, spaces, abilities, permissions, components

US 8,621,368 B2

49

and other objects of a virtual world system. For example, [.1
may provide the following types of exported interfaces:

IComponentSystem—Allows components to obtain infor-
mation about other installed components.

IPermissionSystem—Allows components to define per-
missions, create permissions, assign permission to entities,
and determine whether permissions are available for various
objects in the context of various clients

1AbilitySystem—Allows components to define abilities,
assign abilities to entities, and determine whether abilities are
available for various objects in the context of various clients.

IEntitySystem—Allows components to create entities and
interface with entities. Personas, social groups, avatars, etc.
may be created in this type of interface.

IWorldspaceSystem—Allows components to create and
interface with objects in world space, e.g. worlds, scenes,
instances, etc.

IChatSystem—Allows components to create chat chan-
nels, add users to chat channels, send messages to chat chan-
nels, and manipulate other aspects of chat channels.

IRelationshipSystem—Allows components to define and
manage social relationships among entities. For example
friendships, social groups, etc., may be created.

Object Management System—Allows components to
define and create object types, i.e. objects that could exist
within a world or scene, and object templates, i.e. objects that
have been created and objects which are stored in locations
within a world or scene.

Layer 2 uses the instance host(s) and service provider to
import and/or export interfaces from/to Layer 1. The instance
hosts and service provider, therefore, may act as a Server
Application Program Interface (“API”), which determines
how Layer 2 can interact with Layer 1. .2 components may,
therefore, be used export interfaces which have been
imported into L.1. [.2 components may also be used to “fire”
or initiate events during various processes within a virtual
world. These events include, but are not limited to abilities,
permissions, and other types of notifications within a virtual
world.

Layer 1 may also be considered to be a series of workflow
interfaces, wherein each workflow interface represents a task
the layered system infrastructure is capable of carrying out.
Workflow interfaces may include, but are not limited to: a
“Login workflow”, a “Navigate workflow” for browsing to a
URL, a “Reconnect workflow”, a “Create World” interface,
and “Create Persona” interface. These types of worktlows
interfaces have one or more connection or hook points where
L2 can fire or initiate an event and extend the behavior of the
event. An [.2 component may, for example, become involved
with a particular L1 workflow interface by exporting the
appropriate interface from [L.1. When L2 fires or initiates an
event at a hook point in a workflow interface, [.1 will enu-
merate interested components. Interested components are
those that match the workflow interface. L1 will also call
enumerated components and pass a context for the workflow
interface, where the context includes information, which the
L2 component may be able to utilize.

An L2 component may export the following types of inter-
faces:

ILoginWorkflow—an interface having methods the server
can call during a user login workflow

INavigateWorkflow—an interface that handles attempts to
navigate to a given Virtual World Web (VWW) URL.

1Ability Workflow—an interface that notifies a component
that an ability is in use by another user or client.

20

25

30

35

40

45

50

55

60

65

50

IProviderLifetimeEvents—an interface a service provider
can call during installation, uninstallation, or upgrade(s) of an
L2 component.

IHostLifetimeEvents—an interface an instance host can
call during start up and shut down of the system, allowing a
component to initialize.

The layered system components and interfaces described
and listed above are not to be construed as limiting. Addi-
tional components and interfaces may be derived based upon
a combination of one or more of the components and inter-
faces previously described.

Call Flow Illustrating Operation of Multilayer Component
and Interface System

FIG. 25 illustrates an example of a call flow, implementing
amultilayer component and interface system, which involves
a root server 2502, a service provider 2504, an instance host
2506, and a client 2508. A root server 2502 may serve a
component library and component interfaces, and may be
coupled to a database server (not shown). A database server
may include definitions for personas and objects, for
example. A root server 2504 may also provide general ser-
vices across one or more service providers 2504. These types
of services may include user login/logout services, user
accounting services, accounting of real and/or virtual cur-
rency, and the like. The communications transmitted and
received during use of these services may be encrypted and/or
authenticated to ensure that unauthorized users may not
obtain information from the root server 2504.

The service provider 2504 may also include or couple to
the database, which provides definitions for persons and
objects. However, a service provider will also manage com-
ponents and instances within a virtual world system. .2 com-
ponent selection 2510, therefore, may occur at both the root
server 2502 and the service provider 2504.

An L2 component may be installed 2514 at the service
provider 2504 and installed 2518 at the instance host 2506.
An instance host 2506 services instances, using installed
components. In so doing, an instance host can represent all of
the content that is serviced by the service provider, i.e. infor-
mation regarding world space and objects in a three-dimen-
sional scene.

The client 2508 may operate a user interface for instances
of a three-dimensional scene hosted by the instance host
2506. The client may also include input/output devices, for
example input devices such as keyboards or key pad, touch-
screen, camera, and/or microphone, and output devices such
as display devices and audio systems. The client 2508 may
include other components, for example a browser that may be
linked to the user interface so as to enable seamless transitions
between two-dimensional (2D) web content and three-di-
mensional (3D) virtual world scenes.

As illustrated at 2510, a service provider in the process of
configuring a virtual world may select a set of components as
needed to support the desired functions of the virtual world.
The root server 2502 may maintain a library of all compo-
nents that are available for supporting virtual world opera-
tions, from which the service provider may select appropriate
components. The service provider 2504 may receive each
selected L2 component and install 2514 the L2 component
local for servicing events occurring in virtual world instances.
In addition, as shown at 2516, the service provider 2504 may
provide a copy of the .2 component to the instance host 2506,
which may similarly install 2518 the .2 component. The
foregoing operations may be performed as part of operations
for setting up a virtual world, and setting up specific instances
of the virtual world on the instance hosts.

US 8,621,368 B2

51

A client 2508 operating a 2D web browser may, in response
to receiving user input from an input device, initiate a 2D page
request to the service provider 2504, for example using an
HTTP GET request. In response, the service provider 2504
may transmit the requested 2D page to the client 2508, which
may output the page using a display device and browser
interface. A web browser operating on the client may include
a3D plug-in component 2524 that can be selectively activated
in response to user input (U/I) to the client 2508. For example,
a user may select a “button” or similar interactive object to
activate the 3D plug-in.

Once activated, the 3D plug-in may transmit a 3D page
request 2526 to the service provider 2504. The 3D page
request may contain an instruction or message signifying that
the client is seeking access to a 3D virtual world scene cor-
responding to the 2D page. In response to receiving the 3D
page request, the service provider 2504 may communicate
with the root server 2502 using the L1 interface, as shown at
2528. 1.1 workflows at the root server may be used to handle
generic operations such as authentication and user account
management. For example, the L1 communications 2528
may be used to verify that a user identified with the client
2508 is authorized to access the 3D scene requested by the 3D
page request, to track user requests for accounting or other
purposes, and perform other general functions.

If the identified user is confirmed as authorized to access
the 3D scene, the service provider may execute a process
2530 for selecting an instance host for an appropriate instance
of the requested virtual world scene. If there is no currently
available instance, the service provider may transmit a signal
to a selected instance host 2506 to open (instantiate) an
instance of the requested 3D scene, as shown at 2532. In
addition, the service provider 2504 may transmit a messageto
the client 2508, directing the client to the instance that is (or
will be) instantiated at the instance host 2506, as shown at
2534.

The instance host 2506 may, as shown at 2538, instantiate
an instance of the virtual world scene, for example by execut-
ing one or more of the L.2 components installed for servicing
the virtual world. Such components may pull a collection of
documents defining the scene from a database, and then
execute one or more components that receive the document
contents, and process the document contents to instantiate the
scene. The instantiation may comprise a state machine gen-
erating a sequence of three-dimensional scene states, wherein
objects in the scene are assigned properties and behaviors
according to parameters and rules sets defined in the docu-
ments and/or negotiated between [2 components when
objects interact. A process of instantiation may include com-
municating with the root server 2502 using the [.1 interface to
perform generic [.1 functions as exemplified in the foregoing
section. Optionally, the instance host may confirm availabil-
ity of the instantiated scene to the client 2508, as indicated at
2536.

Once the instance of the 3D scene is instantiated, the client
device 2508 may interact with the instance and cause events
within the scene by receiving user input 2540 via an input
device, and in response to the input, transmitting one or more
object-related requests to the instance host, as indicated at
2542. Multiple additional clients (not shown) may similarly
receive user input and interact with the scene. The instance
host 2506 may receive and process messages from one or
more clients using [.2 components operating the instances.
This may include, for example, L2 event processing 2544 in
cooperation with corresponding [.2 components operating on
the service provider 2504. As previously noted, 1.2 compo-
nents may also hook into and therefore trigger [.1 workflows

20

25

30

35

40

45

50

55

60

52

involving .1 interface communications (not shown) with the
root server during instantiation of a 3D scene. In the alterna-
tive, or in addition, .2 components may handle events that do
not include interfacing with any L.1 workflow.

The instance host 2506 may generate data for viewing the
3D scene, as indicated at 2546. For example, the instance host
2506 may write the respective states ofthe scene at successive
times of a time sequence to a computer memory, including at
least position and orientation of three-dimensional objects
modeled in the scene. The computer memory may cache a
stream of time-related data from the instantiation, which the
instance host may provide to the client 2508 as indicated at
2548. For example, the instance host 2506 may stream time-
related data to the client 2508 using a streaming protocol. The
client 2508 may receive the scene data and process the data
using a user interface component to generate an animated 3D
view of the scene, and output the view to the user via a display
device. Accordingly, aspects of the flow 2500 comprise a state
machine that receives data representing physical inputs from
user input devices, maps those physical inputs to objects and
events in a 3D model, and outputs the resulting 3D scene to a
physical output device. Operations of the flow 2500, for
example the instantiation represented at 2538, depend on
physical inputs to provide physical outputs, and may not be
ultimately functional or useful without such inputs and out-
puts.

Example Methodologies and Apparatus

As shown in FIG. 26, a computer server system may per-
form a method 2600 for generating an instance of a three-
dimensional scene, using aspects of a multilayer component
and interface system, shown in FIG. 25. The method 2600
may include, at 2610, instantiating, in one or more computer
memories, an instance of a three-dimensional scene defined
by a collection of document objects, wherein the document
objects are encoded in a markup language and defined by
respective three-dimensional modeled objects or spaces. For
example, an instance host may retrieve the collection of docu-
ments as identified by a service provider, and process the
documents using one or more L2 components operating as a
state machine.

The method 2600 may further include, at 2620, controlling
contents of the collection of document objects in response to
signals received by a processor from one or more client
devices. For example, an instance server may add or remove
documents from the collection in response to signals from
client devices indicating that personas or owned objects
should enter or leave the scene, or in response to events
outcomes determined by [.2 components in response to user
input and a rule set for determining event outcomes.

The method 2600 may further include, at 2630, recording,
in the one or more computer memories, a sequence of three-
dimensional scene states based on respective states of the
scene at successive times of a time sequence, including at
least position and orientation of three-dimensional objects
modeled in the scene. For example, the instance server may
write a data stream to a memory cache.

The method may further include, at 2640, providing data
representing the sequence of three-dimensional scene states
to the one or more clients. For example, the instance server
may stream the data to the one or more clients.

With reference to FIGS. 27-28, one or more of operations
2700 and 2800 may optionally be performed as part of
method 2600. The elements 2700 and 2800 may be performed
in any operative order, or may be encompassed by a develop-
ment algorithm without requiring a particular chronological
order of performance. Operations can be independently per-
formed and are not mutually exclusive. Therefore any one of

US 8,621,368 B2

53

such operations may be performed regardless of whether
another downstream or upstream operation is performed. For
example, if the method 2600 includes at least one of the
operations 2700 and 2800, then the method 2600 may termi-
nate after the at least one operation, without necessarily hav-
ing to include any subsequent downstream operation(s) that
may be illustrated.

In an aspect, with reference to FIG. 27, the method 2600
may further include additional operations 2700 for instanti-
ating the instance of a scene. The additional operations may
include, at 2710, instantiating the instance of the scene at least
in part by instantiating each of the document in the collection.
The method 2600 may further include, at 2720, instantiating
at least one of the document objects at least in part by creating
from a document template received by the processor, a copy
of'the at least one of the document object in the collection of
document objects. The method 2600 may further include, at
2730, organizing a collection of document objects in a hier-
archal tree based on document object properties. The method
2600 may further include, at 2740, formatting the data into a
format enabling a three-dimensional animated display of the
scene for a user interface of the one or more client.

In other aspects, with reference to FIG. 28, the method
2600 may further include additional operations 2800 relating
to installation of additional components. The additional
operations may include, at 2810, installing one or more com-
ponents in the one or more computer memories, which are
adapted for supporting the instance of the scene, in response
to receiving an instruction from a server. In another aspect,
the method 2600 may further include, at 2820, controlling the
collection of the document objects at least in part by detect-
ing, using the one or more components, executed by the
processor, one of the signals which signify events that corre-
spond to ones of the document objects. In addition, the
method 2600 may further include, respectively at 2830, 2840
and 2850, generating an information signal in response to
detecting the ones of the signal signifying events, and trans-
mitting the information signal to the server, communicating
with the server using the one or more components executed by
the processor to determine respective outcomes of the events,
and updating states of one or more of the document objects in
the collection, according to the respective outcomes, and
updating states of one or more of the document objects in the
collection, according to the respective outcomes.

With reference to FIG. 29, there is provided an exemplary
apparatus 2900 that may be configured as computer server,
client device, or combination of client and server, for instan-
tiating a three-dimensional scene. The apparatus 2900 may
include functional blocks that can represent functions imple-
mented by a processor, software, or combination thereof (e.g.,
firmware).

As illustrated, in one embodiment, the apparatus 2900 may
include an electrical component or module 2902 for instanti-
ating an instance of a three-dimensional scene defined by a
collection of document objects, wherein the document
objects are encoded in a markup language and define respec-
tive three-dimensional modeled objects or spaces. For
example, the electrical component or means 2902 may
include at least one control processor 2910 coupled to a
memory component 2916. The control processor may operate
an algorithm, which may be held as program instructions in
the memory component. The algorithm may include, for
example, retrieving a document collection identified by a
service provider, processing the collection to extract informa-
tion defining a 3D scene, and maintaining a current scene
state based on the information.

20

25

30

35

40

45

50

55

60

65

54

The apparatus 2900 may include an electrical component
or module 2903 for controlling contents of the collection of
document objects in response to signals from one or more
client devices. For example, the electrical component or
means 2903 may include at least one control processor 2910
coupled to a memory component 2916. The control processor
may operate an algorithm, which may be held as program
instructions in the memory component. The algorithm may
include, for example, maintaining a current scene state in
response to a message stream from one or more clients sig-
nifying requested operations for personas and objects
included in the object collection. The algorithm may further
include calculating a scene state using the inputs to detect
events occurring in the scene and a rule set for determining
event outcomes.

The apparatus 2900 may further include an electrical com-
ponent or module 2904 for recording a sequence of three-
dimensional scene states based on respective states of the
scene at successive times of a time sequence, including at
least position and orientation of three-dimensional objects
modeled in the scene. For example, the electrical component
or means 2904 may include at least one control processor
2910 coupled to a memory component 2916. The control
processor may operate an algorithm, which may be held as
program instructions in the memory component. The algo-
rithm may include, for example, writing successive states to a
cache memory to define a data stream.

The apparatus 2900 may further include an electrical com-
ponent or module 2906 for providing data, representing the
sequence of three-dimensional scene states to the one or more
clients. For example, the electrical component or means 2906
may include at least one control processor 2910 coupled to a
memory component 2916 to provide such data. The control
processor may operate an algorithm, which may be held as
program instructions in the memory component. The algo-
rithm may include, for example, streaming a data stream to
one or more clients. The apparatus 2900 may include similar
electrical components for performing any or all of the addi-
tional operations 2700 and 2800 described in connection with
FIGS. 27-28, which for illustrative simplicity are not shown
in FIG. 29.

In related aspects, the apparatus 2900 may optionally
include a processor component 2910 having at least one pro-
cessor, in the case of the apparatus 2900 configured as a
network entity. The processor 2910, in such case may be in
operative communication with the components 2902-2906 or
similar components via a bus 2912 or similar communication
coupling. The processor 2910 may effect initiation and sched-
uling of the processes or functions performed by electrical
components 2902-2906.

In further related aspects, the apparatus 2900 may include
a network interface component 2914 enabling communica-
tion between a client and a server. The apparatus 2900 may
optionally include a component for storing information, such
as, for example, a memory device/component 2916. The com-
puter readable medium or the memory component 2916 may
be operatively coupled to the other components of the appa-
ratus 2900 via the bus 2912 or the like. The memory compo-
nent 2916 may be adapted to store computer readable instruc-
tions and data for implementing the processes and behavior of
the components 2902-2906, and subcomponents thereof, or
the processor 2910, or the methods disclosed herein. The
memory component 2916 may retain instructions for execut-
ing functions associated with the components 2902-2906.
While shown as being external to the memory 2916, it is to be
understood that the components 2902-2906 can exist within
the memory 2916.

US 8,621,368 B2

5§
Additional Embodiments

Conditional language, such as, among others, “can,”
“could,” “might,” or “may,” unless specifically stated other-
wise, or otherwise understood within the context as used, is
generally intended to convey that certain embodiments
include, while other embodiments do not include, certain
features, elements and/or steps. Thus, such conditional lan-
guage is not generally intended to imply that features, ele-
ments and/or steps are in any way required for one or more
embodiments or that one or more embodiments necessarily
include logic for deciding, with or without user input or
prompting, whether these features, elements and/or steps are
included or are to be performed in any particular embodi-
ment.

Any process descriptions, elements, or blocks in the flow
diagrams described herein and/or depicted in the attached
figures should be understood as potentially representing mod-
ules, segments, or portions of code which include one or more
executable instructions for implementing specific logical
functions or steps in the process. Alternate implementations
are included within the scope of the embodiments described
herein in which elements or functions may be deleted,
executed out of order from that shown or discussed, including
substantially concurrently or in reverse order, depending on
the functionality involved, as would be understood by those
skilled in the art.

All of the methods and tasks described herein may be
performed and fully automated by a computer system. The
computer system may, in some cases, include multiple dis-
tinct computers or computing devices (for example, physical
servers, workstations, storage arrays, and so forth) that elec-
tronically communicate and interoperate over a network to
performthe described functions. Each such computing device
typically includes a processor (or multiple processors) that
executes program instructions or modules stored in a memory
or other computer-readable storage medium. Where the sys-
tem includes multiple computing devices, these devices may,
but need not, be co-located. The results of the disclosed
methods and tasks may be persistently stored by transforming
physical storage devices, such as solid state memory chips
and/or magnetic disks, into a different state.

All of the methods and processes described above may be
embodied in, and fully automated via, software code modules
executed by one or more general purpose computers. The
code modules may be stored in any type of computer-readable
medium or other computer storage device. Some or all of the
methods may alternatively be embodied in specialized com-
puter hardware. The results of the disclosed methods be
stored in any type of computer data repository, such as rela-
tional databases and flat file systems that use magnetic disk
storage and/or solid state RAM.

Many variations and modifications may be made to the
above-described embodiments, the elements of which are to
be understood as being among other acceptable examples. All
such modifications and variations are intended to be included
herein within the scope of this disclosure. The foregoing
description details certain embodiments of the invention. It
will be appreciated, however, that no matter how detailed the
foregoing appears in text, the invention can be practiced in
many ways. As is also stated above, the use of particular
terminology when describing certain features or aspects of
the invention should not be taken to imply that the terminol-
ogy is being re-defined herein to be restricted to including any
specific characteristics of the features or aspects of the inven-
tion with which that terminology is associated.

20

25

30

35

40

45

50

55

60

65

56

What is claimed is:
1. A method, comprising:
instantiating, by a computing system having one or more
hardware computer processors, in one or more computer
memories of the computing system, a three-dimensional
scene defined by a collection of document objects,
wherein the document objects are encoded and define
respective three-dimensional modeled objects or spaces;

receiving respective signals from two or more client
devices, the signals indicating respective changes to ver-
sions of the three-dimensional scene associated with the
two or more client devices, the signals including a first
signal received at a first instance of the three-dimen-
sional scene from a first client device and a second signal
received at a second instance of the three-dimensional
scene from a second client device, the first signal and the
second signal each indicating respective changes to an
object included in the collection of document objects;

determining a sequence of states for the object over time
based on the indicated respective changes from the first
instance and the second instance;
recording, in the one or more computer memories, a
sequence of three-dimensional scene states based on the
determined sequence of states of the object at successive
times of a time sequence, including at least position and
orientation of the object modeled in the scene; and

providing data representing the sequence of three-dimen-
sional scene states to the two or more client devices, such
that upon application of the sequence of three-dimen-
sional scene states, respective instances of the three-
dimensional scene associated with the two or more cli-
ent devices include a synchronized scene state.

2. The method of claim 1, further comprising instantiating
an instance of the scene at least in part by instantiating ones of
the document objects in the collection.

3. The method of claim 2, further comprising instantiating
atleast one of the document objects at least in part by creating,
from a document template received by the processor, a copy
of'the at least one of the document objects in the collection of
document objects.

4. The method of claim 2, further comprising organizing
the collection of document objects in a hierarchical tree based
on document object properties.

5. The method of claim 1, further comprising installing one
or more components in the one or more computer memories
adapted for supporting an instance of the scene, in response to
receiving an instruction from a server.

6. The method of claim 5, further comprising controlling
the collection of document objects at least in part by detect-
ing, using the one or more components executing by the
processor, ones of the signals signifying events correspond-
ing to ones of the document objects.

7. The method of claim 6, further comprising generating an
information signal in response to the detecting the ones of the
signals signifying events, and transmitting the information
signal to the server.

8. The method of claim 7, further comprising communi-
cating with the server using the one or more components
executing by the processor to determine respective outcomes
of the events.

9. The method of claim 8, further comprising updating
states of one or more of the document objects in the collec-
tion, according to the respective outcomes.

10. The method of claim 1, further comprising formatting
the data into a format enabling a three-dimensional animated
display of the scene for a user interface of the two or more
client devices.

US 8,621,368 B2

57

11. The method of claim 1, wherein the document objects
are encoded according to a markup language selected from
the group consisting of: a Hypertext Markup Language
(HTML) object, an Extensible Hypertext Markup Language
(XHTML) or Extensible Markup Language (XML).

12. An apparatus comprising;

a computer processor; and

amemory holding instructions configured for execution by

the processor to cause the apparatus to:

instantiate a three-dimensional scene defined by a col-
lection of document objects, wherein the document
objects are encoded in a markup language and define
respective three-dimensional modeled objects or
spaces;

receive respective signals from two or more client
devices each depicting respective versions of the
three-dimensional scene, the signal indicating a
change to a respective version of the three-dimen-
sional scene associated with the client device trans-
mitting the signal, the signals including a first signal
received at a first instance of the three-dimensional
scene from a first client device and a second signal
received at a second instance of the three-dimensional
scene from a second client device, the first signal and
the second signal each indicating a change to an
object included in the collection of document objects;

determine a sequence of states for the object over time
based on the indicated respective changes from the
first instance and the second instance;

record a sequence of three-dimensional scene states
based on the determined sequence of states of the
object at successive times of a time sequence, includ-
ing at least position and orientation of the object mod-
eled in the scene; and

provide data representing the sequence of three-dimen-
sional scene states to the two or more client devices,
such that upon application of the sequence of three-
dimensional scene states, respective instances of the
three-dimensional scene associated with the two or
more client devices include a synchronized scene
state.

13. The apparatus of claim 12, wherein the memory holds
further instructions for instantiating an instance of the scene
atleastin part by instantiating ones of the document objects in
the collection.

20

25

30

35

40

58

14. The apparatus of claim 13, wherein the memory holds
further instructions for instantiating at least one of the docu-
ment objects at least in part by creating, from a document
template received by the processor, a copy of the at least one
of'the document objects in the collection of document objects.

15. The apparatus of claim 13, wherein the memory holds
further instructions for organizing the collection of document
objects in a hierarchical tree based on document object prop-
erties.

16. The apparatus of claim 12, wherein the memory holds
further instructions for installing one or more components in
the memory adapted for supporting an instance of the scene,
in response to receiving an instruction from a server.

17. The apparatus of claim 16, wherein the memory holds
further instructions for controlling the collection of document
objects at least in part by detecting, using the one or more
components executing by the processor, ones of the signals
signifying events corresponding to ones of the document
objects.

18. The apparatus of claim 17, wherein the memory holds
further instructions for generating an information signal in
response to the detecting the ones of the signals signifying
events, and transmitting the information signal to the server.

19. The apparatus of claim 18, wherein the memory holds
further instructions for communicating with the server using
the one or more components executing by the processor to
determine respective outcomes of the events.

20. The apparatus of claim 18, wherein the memory holds
further instructions for updating states of one or more of the
document objects in the collection, according to the respec-
tive outcomes.

21. The apparatus of claim 12, wherein the memory holds
further instructions for formatting the data into a format
enabling a three-dimensional animated display of the scene
for a user interface of the two or more client devices.

22. The apparatus of claim 12, wherein the memory holds
further instructions for interpreting the document objects
according to the markup language selected from the group
consisting of: a Hypertext Markup Language (HTML) object,
an Extensible Hypertext Markup Language (XHTML) or
Extensible Markup Language (XML).

#* #* #* #* #*

