
USOO8832849B2

(12) United States Patent (10) Patent No.: US 8,832,849 B2
Shuster (45) Date of Patent: *Sep. 9, 2014

(54) COMPUTER DATA OBJECT MODIFICATION (58) Field of Classi?cation Search

(71)

(72)

(73)

(*)

(21)

(22)

(65)

(63)

(60)

(51)

(52)

BASED ON DATA TYPES IN A NETWORKED
ENVIRONMENT

Applicant: Intellectual Ventures I LLC,
Wilmington, DE (US)

Inventor: Gary Stephen Shuster, Fresno, CA
(113)

Assignee: Intellectual Ventures I LLC,
Wilmington, DE (US)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 0 days.

This patent is subject to a terminal dis
claimer.

Appl. No.: 13/680,769

Filed: Nov. 19, 2012

Prior Publication Data

US 2013/0080515 A1 Mar. 28, 2013

Related US. Application Data

Continuation of application No. 12/370,047, ?led on
Feb. 12, 2009, now Pat. No. 8,316,452, which is a
continuation of application No. 11/356,575, ?led on
Feb. 17, 2006, now Pat. No. 7,493,660, which is a
continuation of application No. 09/859,948, ?led on
May 16, 2001, now Pat. No. 7,051,362.

Provisional application No. 60/204,994, ?led on May
16, 2000.

Int. Cl.
H04K1/00
US. Cl.
USPC 726/26; 726/22

(2006.01)

owsn mu READ
DlREGTORV

we

USPC 713/1604161, 1654166, 193; 726/2, 22,
726/26; 709/219, 229; 380/28

See application ?le for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

6,198,850 B1 3/2001
6,209,096 B1 * 3/2001
6,311,214 B1 * 10/2001
6,389,472 B1 5/2002 Hughes et a1.
6,493,744 B1 12/2002 Emens et a1.

(Continued)

Banton
Taruguchi 713/193

Rhoads 709/217

FOREIGN PATENT DOCUMENTS

WO 98/25373 6/1998

OTHER PUBLICATIONS

Response to Final Of?ce Action in US. Appl. No. 12/370,047 issued
Mar. 14, 2012, mailed May 8, 2012, 9 pages.

(Continued)

Primary Examiner * Samson Lemma

(57) ABSTRACT

A network server may discourage inappropriate use. Files
may be altered in such a way as to not noticeably affect
acceptable, desired ?le types, but to substantially corrupt
undesirable ?le types. Every ?le copied to or from a memory
of a server may be affected, or the method may be applied
only to selected ?les or types of ?les. In particular, ?les that
may be corrupted by alternation include executable software
?les and compressed ?les, which may be fault intolerant.
Fault tolerant ?les, which may include text and graphics ?les,
may not be noticeably affected. In some cases, copyrighted
?les, media ?les, and/or other ?les are altered to prevent
undesirable distribution.

20 Claims, 2 Drawing Sheets

Flmsn

US 8,832,849 B2
Page 2

References Cited

U.S. PATENT DOCUMENTS

(56)

6,591,367 B1 7/2003
6,704,872 B1 3/2004
6,972,856 B1* 12/2005
7,051,362 B2 5/2006
7,493,660 B2 2/2009

2002/0083070 A1 6/2002

Kobata et a1.
Okada
Takahashi

Shuster
Shuster
Shuster

358/1.14

2006/0143361 A1 6/2006 Kottapallietal.

OTHER PUBLICATIONS

Supplemental Response to Final Of?ce Action in US. Appl. No.
12/370,047 issued Mar. 14, 2012, mailed Jun. 14,2012, 8 pages.
Final Of?ce Action in US. Appl. No. 12/370,047 issued Mar. 14,
2012, 6 pages.

* cited by examiner

US. Patent Sep. 9, 2014 Sheet 1 0f2 US 8,832,849 B2

13

15

Fig. 1 17

US. Patent Sep. 9, 2014 Sheet 2 0f2 US 8,832,849 B2

Fig. 2 20 30

/ f Fig. 3

SELECT FILE IN
MEMORY OPEN AND READ ,

DIRECTORY

CHARACTERIZE
FILE

37
SELECT

ALTERATION
ALGORITHM

SELECT NEXT
OPEN FILE

ALTER FILE IN
MEMORY

CLOSE FILE

FLIP BIT OF

[(AI*i)+BABOF]TH
BYTE

INCREMENT i

US 8,832,849 B2
1

COMPUTER DATA OBJECT MODIFICATION
BASED ON DATA TYPES IN A NETWORKED

ENVIRONMENT

CROSS-REFERENCE TO RELATED
APPLICATION

This present application is a continuation of US. applica
tion Ser. No. 12/370,047, ?led Feb. 12, 2009, which is a
continuation of US. application Ser. No. 11/356,575, ?led
Feb. 17, 2006 (now US. Pat. No. 7,493,660), which is a
continuation of US. application Ser. No. 09/859,948, ?led
May 16, 2001 (now US. Pat. No. 7,051,362), which claims
priority to US. Provisional Appl. No. 60/204,994, ?led May
16, 2000; the disclosures of each of the above-referenced
applications are incorporated by reference herein in their
entireties.

BACKGROUND OF THE INVENTION

1. Field of the Invention
The present invention relates to methods and systems for

operating a server connected to a wide area network, such as
the Internet, and particularly to a method and system for
receiving, serving, and storing ?les in response to requests
from users, whereby inappropriate use of the server, such as
illegal copying and distribution of copyrighted content, may
be selectively discouraged.

2. Description of Related Art
Publicly accessible servers, in particular servers that pro

vide storage space for no charge, such as servers on free web
hosts, are often used inappropriately in violation of agreed
terms of service and copyright laws for the distribution of
copyrighted ?les such as software, music, image and video
?les. Such ?le types often consist of or contain illegally
copied content. The illegally copied content may lend an
undesirable taint to operators of web hosting services who do
not wish to be perceived as encouraging, condoning, or par
ticipating in copyright violations. Additionally, the storage
and exchange of these illegal or otherwise inappropriate ?les
consumes bandwidth and other resources needed for more

appropriate uses, thereby choking and discouraging the uses
that the web server is intended to serve. Another injury that
may be caused by inappropriate or illegal copying is dispro
portionately heavy use of the server by relatively few users,
thereby reducing performance for all users, and reducing the
number of subscribers that the hosting service attracts. A
related problem is the devaluation of advertising space as a
result of people downloading such ?les, and the potential for
alienating advertisers who have purchased advertising space
on the servers that are being used inappropriately.

Therefore, a method and system is needed to discourage
inappropriate use of publicly available, network-connected
server space, without adversely affecting intended uses of the
server space or restricting public access. The method and
system should integrate seamlessly and cost-effectively with
existing network protocols and server software and hardware.

SUMMARY OF THE INVENTION

A method and system for operating a network server are
provided, whereby ?les on the server are altered in such a way
so as to essentially not affect appropriate, desired ?le types in
any noticeable way, and to corrupt inappropriate, undesirable
?le types. As used herein, to “corrupt” a ?le means to alter it
so that it becomes substantially unusable for its intended
application. For example, a corrupted executable ?le cannot

20

25

30

35

40

45

50

55

60

65

2
be executed without generating a fatal error or otherwise
failing to operate in the intended manner; music in a corrupted
music ?le cannot be played; and ?les within a compressed
multi-part ?le cannot be extracted and/or used.

The method may be applied to every ?le copied to or from
a memory of the server. In the alternative, the method may be
applied only to selected ?les or types of ?les on the server. In
particular, the ?les corrupted by altering according to the
invention may be executable software ?les and compressed
?les that are generally not fault-tolerant. Fault tolerant ?les,
such as uncompressed text and graphics ?les in common
Internet-compatible formats, are not noticeably affected.
Consequently, the invention is particularly useful for operat
ing a server wherein the desired or acceptable ?le types are
fault-tolerant, and the undesired ?le types are generally not
fault-tolerant. The destructive alteration of undesirable ?le
types may be made dif?cult or impossible to reverse by any
one lacking knowledge of the corruption scheme. The net
work server will therefore no longer be useful for storing or
transferring undesirable ?les, and such use will be discour
aged. System bandwidth is thereby conserved, and the
response of the server to appropriate uses can be greatly
improved. Furthermore, the method can be implemented in a
variety of different systems without consuming signi?cant
system resources.
According to an embodiment of the invention, the server is

connected through a network, such as the Internet, to a plu
rality of client devices, and is con?gured to transfer informa
tion between any selected one of the client devices and a
memory for static storage of information. The method com
prises the steps of selecting a ?le residing in a memory of the
server for alteration by applying predetermined screening
rules, and altering a relatively small discrete portion of the
identi?ed ?le according to an algorithm comprising a set of
predetermined alteration rules. The predetermined alteration
rules are such that the information value and functionality of
fault-tolerant ?les is essentially unchanged, while fault-intol
erant ?les are essentially rendered unusable. The amount of
data altered in the ?le may be as small as a single bit. The
alteration step may be performed as ?les are served from the
server or as they are transferred to the server. In the altema
tive, the alteration step may be performed while the ?les are
stored in a static server memory, such as by using a disk
crawling method.

Preferably, the alteration rules provide for placing any
altered bits towards the end of the ?le, where they are least
likely to affect appropriate ?le types, for example, HTML and
graphics ?les. The location for placing altered bits may be
selected at random, so that the altered ?le cannot be repaired.
In the alternative, a complex quasi-random algorithm may be
used to select the location of the altered bits, so that the ?le
can only be repaired by someone who knows the algorithm. A
quasi-random algorithm has the added bene?t of making
difficult the detection of the precise algorithm used via a
comparison of various ?les pre- and post-alteration. The alter
ation may be made “invisible”ii.e., inconsequentialito
appropriate ?le types, by determining the manner in which
the alteration is made based on a putative ?le type. For
example, a harmless comment, such as “<! >” may be inserted
into a ?le with a “.htm” extension (signifying an HTML
formatted ?le). Insertion of inconsequential information
based on putative ?le type is particularly effective in discour
aging deceptive naming practices, whereby undesired ?le
types are disguised by assigning a name signifying a desired
type of ?le to an undesired ?le. Traceable information may be
inserted into the ?les during alteration, to facilitate tracking
future copying of the ?le. Similarly, ?les may be “?agged” so

US 8,832,849 B2
3

that they are not inadvertently altered more than once. In an
embodiment of the invention, selected types of bytes, such as
non-text characters, are deleted or altered, to discourage dis
guising undesirable ?le types as acceptable ?le types, such as
“.txt” or “.htm” ?les. These and other alteration rules may be
used and combined in various ways in an alteration method
according to the invention.

According to a related embodiment of the invention, a
system comprises a server having an application that per
forms one of the embodiments of the method according to the
invention. A more complete understanding of the method and
system for operating a network server to discourage inappro
priate use will be afforded to those skilled in the art, as well as
a realization of additional advantages and objects thereof, by
a consideration of the following detailed description of the
preferred embodiment. Reference will be made to the
appended sheets of drawings which will ?rst be described
brie?y.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a system diagram showing an exemplary system
for implementing a method according to the invention, and its
relationship to other elements.

FIG. 2 is a ?ow diagram showing exemplary steps for
performing a method according to the invention in general.

FIG. 3 is a ?ow diagram showing exemplary steps for
performing an alteration algorithm according to an exem
plary embodiment of the invention.

DETAILED DESCRIPTION OF THE PREFERRED
EMBODIMENT

The present invention provides a method and system oper
able at an application or higher network level for discourag
ing inappropriate use of network resources. In the detailed
description that follows, like element numerals are used to
describe like elements shown in one or more of the ?gures.

Referring to FIG. 1, system 10 comprises a server 16 and an
application 14 executing on the server. Server 16 is typically
a general purpose computer con?gured for serving informa
tion to multiple users across a network, but may comprise any
high-level computing device capable of performing the
method described herein. Application 14 comprises a pro
gram of instructions for performing the method described
herein, and may additionally comprise instructions for per
forming other server functions as known in the art.

Server 16 is connected to network 13 by communication
link 15 and to a memory 18 containing at least one ?le 17.
Memory 18 is any device, such as a hard drive or array of hard
drives, tape drive, optical disk drive, or similar device, for
static storage of information; and particularly, devices
capable of accessing and storing massive amounts of high
level data for inde?nite periods. In an embodiment of the
invention, memory 18 is physically adjacent to server 16 and
connected to the server through a server-operated bus 19.
Server 10 controls access by users, such as user 11 connected
to network 13, to memory 18. File 17 is a set of high-level data
encoded in a ?nite number of discrete information bits, such
as binary bits. A plurality of ?les such as ?le 17 are used to
exchange high-level information between a plurality of users,
such as user 11, connected to network 13 using client devices
such as terminal 12 and a communication link 15. Network 13
may be a wide area network, such as the Internet, a local area
network, or a combination of different types of networks. The
network may be operated by various protocols, such as TCP/

20

25

30

35

40

45

50

55

65

4
IP. The system and method according to the invention are not
limited to application with any particular type of network,
protocol, or client device.

Referring to FIG. 2, exemplary general steps of a method
20 for discouraging inappropriate use of memory connected
to a network are shown. An initial step of method 20 is the
selection at step 21 of a ?le in the server memory for alter
ation. In an embodiment of the invention, alteration is applied
to all public ?les stored, or to be stored, in the server’s static
memory storage. Generally, the method may be effectively
applied to all ?les received from public sources for storage on
the server. That is, ?les may be selected without determining
whether the ?le is an inappropriate type of ?le or an appro
priate type of ?le. Of course, ?les received from trusted
sources, such as ?les created by a network administrator, are
preferably not subjected to alteration.

In the alternative to applying the method to all ?les in the
server’s public storage areas, the method may be applied to
?les of a selected type, such as “.mp3” ?les. However, ?le
types may generally be disguised, so the latter embodiment
may suffer from the disadvantage of being easily circum
vented. Furthermore, if the ?le type can indeed be reliably and
quickly determined, it may be simpler and more effective to
simply delete or refuse to transfer the offending ?le. However,
method 20 provides advantages relative to a method based on
a “detect and destroy” strategy, when it is not feasible to
automatically determine with certainty that an unknown ?le is
actually inappropriate. The advantages of method 20 may
accrue whether or not it is feasible to automatically identify
?les that are suspected of being inappropriate. When sus
pected ?les may be identi?ed, the public ?les may be
screened or ?ltered in various ways to identify them as can
didates for alteration according to method 20. For example,
only ?les greater than a predetermined size, such as ten kilo
bytes or one-hundred kilobytes, may be subject to alteration.
For further example, a portion or all of each ?le may be
analyzed to identify patterns typical of particular ?le types,
and only ?les displaying patterns typical of inappropriate ?le
types may be selected for alteration. In the alternative, ?les
that display patterns typical of appropriate ?le types may be
spared alteration. Of course, ?les that are self-identi?ed as
being of an offending type, for example “.mp3” ?les, may
simply be deleted.

It may be further advantageous to avoid altering any par
ticular ?le more than once. In some embodiments, the alter
ation algorithm will reverse a particular bit or bits of the ?le.
Employing the same algorithm again may restore the ?le to its
original state, which is generally not desirable (although
reversibility may be advantageous when restoration of an
altered ?le is speci?cally sought). In other embodiments, the
original ?le may not be restored when the alteration algorithm
is employed a second time; however, repeated alteration may
cause appropriate ?le types to become corrupted or notice
ably degraded. Repeated alteration of the same ?le may be
avoided by marking the ?le with a ?ag indicating that the ?le
has been altered. Files marked with the ?ag are then excluded
from further alteration. The ?ag may reside in the ?le itself.
For example, an unusual bit pattern may be placed at a speci
?ed location in the ?le. In the alternative, the ?ag may be
associated with the ?le elsewhere in the storage system. For
example, the ?le attributes may be changed, or the ?le may be
moved to a “read-only” directory containing only public ?les.

Whether or not applied to all public ?les in the server’s
static storage, or to a subset of public ?les, method 20 may
then be triggered by various events. For example, the receipt
of a public request for a ?le transfer may trigger performance
of method 20 upon the requested ?le. If more than one ?le is

US 8,832,849 B2
5

requested, each ?le requested for transfer may be selected in
turn. As used herein, “transfer” includes both the transmis
sion of a ?le from a public memory to a client device, and
storage in the public memory of a ?le received from a client
device. Method 20 may be triggered by both types of trans
fers, but may operate more ef?ciently if operated upon ?les
when received, before the ?les are placed in static storage.
According to this embodiment, the ?les will be stored in an
altered state. If ef?ciency is not a primary concern, it may, in
the alternative, be advantageous to alter ?les only as they are
served in response to a request. Altering ?les upon request
may require repeated processing of the same ?le (that is, of
?les that are requested repeatedly), but can provide the advan
tage of preserving an unaltered copy of every ?le in the
server’ s storage. In the alternative, both an unaltered copy and
an altered copy of every ?le may be stored, with only the
altered copy available for public use. In another alternative
embodiment, any unaltered ?les in the server’s public storage
area are periodically identi?ed and altered, with or without
preserving an unaltered copy. For example, at periodic inter
vals, a “disk-crawling” program may be executed on the
server, where the disk-crawling program will alter all (or a
selected portion of) ?les stored in the server’s static memory
at any particular time.

At optional step 22, the selected ?le may be characterized,
that is, tentatively identi?ed as being of a particular ?le type.
Characterization may be performed as part of a selection step,
or may be performed after a ?le is selected. In either case, the
process of characterization will be the same or similar.
Selected attributes and/or contents of the ?le are read and
characteristic data patterns are recognized. The data patterns
and ?le attributes are compared against a database of
attributes and patterns as related to ?le types, from which a
suspected ?le type is identi?ed. Step 22 provides the advan
tage of facilitating selection of more targeted alteration algo
rithms having a higher probability of corrupting inappropri
ate ?le types while not adversely affecting appropriate ?le
types. However, performance of step 22 may consume sub
stantial resources and may require a higher initial investment
in programming. Accordingly, for simpler, low-cost imple
mentation, step 22 may be omitted.
One likely use for ?le characterization is detection of com

pressed ?les. Many inappropriate ?les comprise a plurality of
?les compressed into a single ?le. The characterization step
may detect such compressed ?les, and also may identify the
location of the individual ?les within the compressed ?le.
Each individual ?le in the compressed ?le may then be tar
geted for alteration. Of course, if it may be determined with
certainty that a compressed ?le is of an inappropriate type, the
compressed ?le may simply be deleted. However, on some
server systems compressed ?les may comprise both appro
priate and inappropriate ?le types.

At step 23, an alteration algorithm is selected. A single
alteration algorithm may be applied to every ?le selected for
alteration. In the alternative, an algorithm may be selected
from a library of alternative algorithms, depending on factors
such as the suspected ?le type. Effective operation of method
20 essentially depends on selection of an appropriate alter
ation algorithm. At the same time, various alternative rules
may be equally or comparably effective in selectively cor
rupting only inappropriate ?le types. Therefore, the rules
described herein are merely exemplary in nature, and are not
intended to limit the scope of the invention.

Alteration algorithms in general comprise a set of rules
and/or a sequence of steps for selecting one or more binary
bits of a ?le. Binary bits, of course, have only two possible
states, so once the appropriate bits have been selected, alter

20

25

30

35

40

45

50

55

60

65

6
ation at step 24 is performed by merely reversing their state,
that is, by changing a zero (0) bit to one (1), and vice-versa.
Bit reversal may be accomplished, for example, by perform
ing an exclusive OR operation on a selected byte of the ?le
and an alteration byte. For more speci?c example, in an
eight-bit byte environment, an exclusive OR with the byte
“00000001” will reverse the lowest-value bit of any compari
son byte. Optionally, the altered ?le may be stored in the
server’s static storage, with or without retaining a copy of the
unaltered ?le. After the desired bits have been altered, method
20 may be repeated for the next ?le, as indicated at step 25.

In an Internet (TCP/IP) environment, it is preferable to
select the bits to be altered occurring a speci?ed number of
bytes, for example, ten kilobytes, after the ?rst byte of the ?le.
Many ?le formats are less fault-tolerant near the beginning of
the ?le. In addition, it may be desirable to ensure that the
checksum for the early part of the ?le is not changed. Files
smaller than the speci?ed number, e.g., less than ten kilo
bytes, may be excluded from being altered. In a related
embodiment, the alteration bit or bits are selected in proxim
ity to the end of the ?le, such as within ten kilobytes of the end
of the ?le.

To prevent circumvention and/or reversibility of the alter
ation, the alteration algorithm may provide for selecting an
alteration bit or bits at random from the ?le to be altered. For
example, a random number generator may be used to select a
byte between ten and a thousand kilobytes. The random selec
tion may then be repeated to alter as many bits as desired.
Technically, most software-driven random number genera
tors do not actually produce random numbers, because the
pattern of numbers produced will typically depend on a
beginning seed number of some kind. However, any given
number produced by such generators using a secret, indepen
dently derived seed can be kept secret, i.e., cannot be deter
mined in a second operation by an independent party. For the
purposes of the present invention, maintaining secrecy of the
seed number will ordinarily be suf?cient to ensure an unpre
dictable, seemingly random result when operating on the
same ?le. This randomness and unpredictability should be
suf?cient to prevent circumvention of the alteration, and
actual randomness should not be required. Should a truly
random number be desired, however, hardware devices for
generating such numbers are available. It should be noted in
addition, that as a practical matter, the number produced by a
typical software-driven random number generator may not be
predicted or determined even by a system operator in posses
sion of the seed number. Therefore, an alteration based on
such a generator may be practically irreversible even by the
system operator.

To make circumvention more dif?cult without destroying
reversibility, a quasi-random generator may be used for bit
selection. A quasi-random generator appears to generate a
random number, but actually, it does not. Instead, it operates
in a reversible way on selected information in or associated
with the ?le to produce a variable number. The same variable
number will be produced if the quasi-random operation is
performed again with the same input values. It may therefore
be desirable for the input variables to include a variable num
ber that is only available to the system operator, as well as a
variable number derived from information in the ?le that is
altered. For example, the quasi-random generator may count
the number of l ’s (i.e., bits having a value of l) occurring in
the ?rst ten kilobytes of the ?le, add a secret number from a
look-up table of random numbers based on the day and time
of alteration, raise the sum of the counted and secret numbers
to the 5/3 power, and multiply by pi. The number generated is,
of course, not random. However, it would be dif?cult for a

US 8,832,849 B2
7

party ignorant of the formula to determine how the number
had been generated and thereby generally circumvent the
alteration scheme, without possessing the formula employed.
The secret independent input variable, if used, additionally
makes circumvention dif?cult in the case of a particular ?le,
because the bits that may be altered during future processing
of a ?le cannot be determined by comparing a previously
altered ?le to an unaltered ?le. That is, different bits will be
altered each time the ?le is processed using the method.
Meanwhile, the quasi-random number may be easily deter
mined by one in possession of the secret formula and look-up
table. Actual formulas may be considerably more complex
than the simple example provided, without departing from the
scope of the invention.

In an embodiment of the invention, the alteration algorithm
determines the method of making an alteration based on a
putative ?le type determined, for example, by the ?le name
extension, ?le header, or other information associated with a
?le that purports to identify the ?le type. The selected alter
ation is invisible, that is, inconsequential, to the ?le of the
purported type. One way to accomplish an inconsequential
alteration is to insert surplus or altered information in a format
that will be essentially ignored when present in ?les of the
purported type. For example, a comment “<!>” may be
inserted within a purported HTML ?le, such as a ?le named
with an “.htm” extension. In the alternative, any character
contained within an existing comment ?eld of a ?le type
supporting delimited comment ?elds, such as an HTML ?le,
may be changed, for example, a space may be changed to a
dash within a comment. Such changes will have no effect
whatever on the display or other use of the ?le, and only an
inconsequential impact on the raw information content of the
?le. However, if a purported ?le with delimited comments is
actually some other type of ?le, for example, an executable
binary-coded ?le, the change will likely effectively corrupt
the ?le.

In a related embodiment using alteration based on putative
?le type, the alteration algorithm identi?es a byte of the ?le
for which a byte synonym exists in the codes of the appropri
ate ?le types. A byte synonym is a byte having a different
value that is interpreted in the same way, or in a substantially
very similar way, as the original byte, when in a ?le of an
appropriate type. For example, a common graphics ?le format
may display the hexadecimal string “AB” in a similar manner
to the string “AF,” such as displaying a pixel having a color of
a slightly different shade. The alteration step 24 then com
prises substituting at least one of the identi?ed bytes with a
byte synonym, for example, exchanging “AE” for “AF.” This
is unlikely to noticeably affect the ?les of the desired type, but
will effectively corrupt other ?le types such as binary coded
?les.
A related approach that may be embodied in an alteration

algorithm is to identify bytes that are not likely to be present
in ?les of desired, appropriate types, and altering or deleting
those bytes. For example, many common, appropriate ?le
types primarily comprise coded text, for example ASCII
coded text characters. Selected or all non-text characters in
the ?le may be deleted or altered, such as, for example, by
changing non-text characters to the ASCII space (blank) char
acter. Text ?les are thus likely to be essentially unaffected by
the alteration, while other ?le types may be corrupted. Similar
algorithms may be employed with other (non-ASCII or non
text) coding schemes. It may be particularly preferable to
select a byte-type speci?c algorithm based on the indicated
?le type. For example, if the ?le is named with a “txt” exten
sion, then selection of a text-speci?c algorithm may be pre

20

25

30

35

40

45

50

55

60

65

8
ferred. If the ?le is named with some other extension, for
example, a “gif” extension, then a different algorithm may be
employed.

According to another embodiment of the invention, the
alteration algorithm comprises a step of inserting traceable
identifying information into a ?le of an inappropriate type.
The identifying information may comprise any bit pattern
that is not present in the unaltered ?le and that is suf?ciently
distinctive to uniquely identify the ?le. At the same time, the
bit pattern should not cause corruption of appropriate ?le
types. Preferably, the identifying information will not be
readily recognized as such by those not in possession of the
identifying algorithm. For example, a particular pattern of
bits may be distributed at speci?ed, secret and/or random
locations in the ?le. The location of the identifying bits may
be recorded in a separate database, or otherwise determinable
with the use of a secret formula or secret data, for use in
subsequent law enforcement efforts.

Elements of the foregoing alteration algorithms may be
combined in various ways without departing from the scope
of the invention. For example, it may be preferable to com
bine algorithms which select bytes towards the end of a ?le
with random or quasi-random bit selection and substitution of
selected non-text characters. One skilled in the art may devise
various other suitable combinations.

Referring to FIG. 3, exemplary steps comprising an alter
ation algorithm 30 of a method according to an embodiment
of the invention are diagrammed. Algorithm 30 is especially
suitable for implementation as a periodically executed disk
crawling application of general applicability to various ?le
types. It is designed to corrupt binary-coded ?les and com
pressed ?les, while creating only relatively minor alterations
in text ?les and most graphics ?les. At a designated time, the
directory containing the public ?les to be altered is opened
and the directory contents are read at step 31. Preferably, the
directory containing the ?les to be processed is designated as
a temporary holding area and only contains ?les that have not
yet been processed.

At step 32, the alteration variables are initialized. In the
exemplary algorithm 30, the variables comprise an alteration
interval (“AI”), expressed as an integer number of bytes, such
as 750 kilobytes; a number of bytes after the beginning of the
?le (“BABOF”), such as ten kilobytes, before which no alter
ation is to occur; and a designated minimum ?le size (“MIN
SIZE”), such as ten kilobytes. In algorithm 30, these variables
are held constant during the disk-crawling procedure, how
ever, they may vary depending onparameters such as ?le size,
if desired.
At step 33, a ?le in the directory is opened. At step 34, the

number of bytes in the ?le are counted and compared to the
MINSIZE variable. If the number of bytes in the ?le is equal
or less than MINSIZE, the ?le is not altered, and the ?le is
then closed and saved at step 35, preferably in a different
directory. The termination condition is then checked at step
36, and if ?les remain to be processed, the next ?le is selected
at step 37, repeating the cycle beginning at step 33.

If the number of bytes in the ?le is greater than MINSIZE,
a counter variable (“i”) is reset to zero at step 38. Then, a
product of AI and I, plus BABOF, is computed at step 39. This
computed number is the location of the byte to be altered in
the current execution cycle, and is compared to the ?le length
at step 39. To prevent termination of the alteration loop in the
?rst cycle (i.e., when i:0 and the byte location therefore
equals BABOF), the MINSIZE variable is preferably greater
than or equal to the BABOF variable. Thus, if in the initial
cycle the ?le length is greater than or equal to BABOF (and in
subsequent cycles, if the ?le length is greater than or equal to

US 8,832,849 B2

BABOF plus each subsequent interval Al cumulative with
prior Al intervals), then a selected bit of the selected byte is
?ipped at step 40. For example, the lowest-value bit of the
byte may be ?ipped. At step 41, the counter variable i is
incremented, such as by l. The cycle of steps 39-41 are
repeated until the end of the ?le is indicated at step 39. The
altered ?le is then closed and saved, preferably in a different
?le directory. The termination condition is then checked at
step 36, the next ?le selected at step 37, and the cycle repeated
beginning at step 33.

The cycle of steps 33-42 are repeated until all ?les in the
directory have been processed. After all ?les have been pro
cessed, the termination condition is satis?ed and the process
terminates at step 36. One skilled in the art may program an
application for performing the steps of algorithm 30 in vari
ous ways.

Having thus described a preferred embodiment of a
method and system for operating a network server to discour
age inappropriate use, it should be apparent to those skilled in
the art that certain advantages of the within system have been
achieved. It should also be appreciated that various modi?
cations, adaptations, and alternative embodiments thereof
may be made within the scope and spirit of the present inven
tion. For example, exemplary alteration algorithms have been
described, but it should be apparent that the inventive con
cepts described above would be equally applicable to other
alteration algorithms. The invention is further de?ned by the
following claims.
What is claimed is:
1. A method, comprising:
a computer system inhibiting usage of data objects having

a ?rst data type that is a prohibited data type, including
accessing a data object having a characteristic of a sec
ond data type, wherein the ?rst data type is distinct from
the second data type; and

based at least in part on the second data type, the computer
system using a data modi?cation algorithm to create a
modi?ed data object by modifying at least one bit of
information in the data object;

wherein the modi?ed data object is usable as the second
data type, but is unusable as the ?rst, prohibited data
we

2. The method of claim 1, wherein the data object is a media
object, and wherein the computer system is con?gured to
serve media transmissions via a network.

3. The method of claim 1, further comprising the computer
system transmitting the modi?ed data object to a user com
puting device in response to a request.

4. The method of claim 1, wherein modifying the at least
one bit of information includes inserting tracking information
into the data object.

5. The method of claim 1, wherein modifying the at least
one bit of information in the data object comprises identifying
one or more speci?c portions of the data object and modifying
information in the one or more speci?c portions.

6. The method of claim 1, wherein creating the modi?ed
data object includes overwriting the data object.

7. The method of claim 1, wherein the second data type is
an audio or video data type, and wherein the ?rst, prohibited
data type is an executable data type.

8. The method of claim 1, wherein said accessing com
prises analyZing one or more data patterns in the data object in
order to determine the second data type.

9. The method of claim 1, further comprising receiving an
upload of the data object from a network and using the data
modi?cation algorithm in response to the upload, wherein the
data object is a ?le.

10. A non-transitory computer readable storage medium
having stored thereon instructions that are executable to cause

10
the computer system to perform operations to inhibit usage of
data objects having a ?rst data type that is a prohibited data
type, comprising:

receiving a transmission request for at least a ?rst data
5 object;

analyZing a characteristic of the ?rst data object to deter
mine a second data type of the ?rst data object; and

based at least in part on the determined second data type,
using a data modi?cation algorithm to cause modi?ed
information to be included in a transmitted version of the

10 ?rst data object, wherein the modi?ed information
allows the transmitted version of the ?rst data object to
be usable as the second data type, but unusable as the
?rst, prohibited data type, wherein the ?rst data type is

15 distinct from the second data type.
11. The non-transitory computer readable storage medium

of claim 10, wherein the second data type includes com
pressed media data.

12. The non-transitory computer readable storage medium
of claim 10, wherein analyZing the ?rst data object is per

20 formed in response to receiving the transmission request.
13. The non-transitory computer readable storage medium

of claim 10, wherein the operations further comprise, in
response to the transmission request, transmitting a data
stream that includes the transmitted version of the ?rst data
object to a remote client via a network.

14. The non-transitory computer readable storage medium
of claim 1 0, wherein the data modi?cation algorithm modi?es
the at least one bit of information based on a size of the ?rst
data object.

15. The non-transitory computer readable storage medium
of claim 10, wherein the operations further comprise analyZ
ing ?le system data for the ?rst data object to determine the
second data type.

16. A system, comprising:
a processor;
a network interface device; and
a computer readable storage medium having stored thereon

instructions that are executable by the processor to cause
the system to perform operations to inhibit usage of data
objects having a ?rst data type that is a prohibited data
type, comprising:
accessing a data object in response to a request;
analyZing a characteristic of the data object to determine

a second data type of the data object; and
based at least in part on the determined second data type,

using a data modi?cation algorithm to create a modi
?ed data object by modifying at least one bit of infor
mation in the data object, wherein the modi?ed data
object is usable as the second data type, but is unus
able as the ?rst, prohibited data type, wherein the ?rst
data type is distinct from the second data type.

17. The system of claim 16, wherein the operations further
comprise, in response to the request, transmitting the modi
?ed data object to a remote client via the network interface
device.

18. The system of claim 16, wherein the data modi?cation
algorithm modi?es the at least one bit of information based on
a ?le type associated with the data object.

19. The system of claim 16, wherein the data modi?cation
algorithm includes identifying a portion of the data object that
has a greater fault-tolerance for being modi?ed than another
portion of the data object.

20. The system of claim 16, wherein the operations further
comprise determining that a second data object has already
been modi?ed in accordance with the data modi?cation algo
rithm, and in response, making no further modi?cation to the
second data object.

25

30

35

40

45

50

55

60

