US008832849B2

a2z United States Patent (10) Patent No.: US 8,832,849 B2
Shuster (45) Date of Patent: *Sep. 9, 2014
(54) COMPUTER DATA OBJECT MODIFICATION (58) Field of Classification Search

(71)

(72)

(73)

")

@
(22)

(65)

(63)

(60)

(1)

(52)

BASED ON DATA TYPES IN A NETWORKED
ENVIRONMENT

Applicant: Intellectual Ventures I LL.C,
Wilmington, DE (US)

Inventor: Gary Stephen Shuster, Fresno, CA
(US)

Assignee: Intellectual Ventures I LL.C,
Wilmington, DE (US)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by O days.
This patent is subject to a terminal dis-
claimer.

Appl. No.: 13/680,769

Filed: Nov. 19, 2012

Prior Publication Data
US 2013/0080515 Al Mar. 28, 2013

Related U.S. Application Data

Continuation of application No. 12/370,047, filed on
Feb. 12, 2009, now Pat. No. 8,316,452, which is a
continuation of application No. 11/356,575, filed on
Feb. 17, 2006, now Pat. No. 7,493,660, which is a
continuation of application No. 09/859,948, filed on
May 16, 2001, now Pat. No. 7,051,362.

Provisional application No. 60/204,994, filed on May
16, 2000.

Int. Cl1.
HO4K 1/00
U.S. CL

USPC

(2006.01)

726/26; 726/22

OPEN AND READ
DIRECTORY

FLIP BT OF
AMNBABOFITH
BYTE

INCREMENT |

SETAL
BABOF
MINSIZE

USPC 713/160-161, 165-166, 193; 726/2, 22,
726/26; 709/219, 229; 380/28

See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

6,198,850 Bl 3/2001
6,209,096 B1* 3/2001
6,311,214 B1* 10/2001
6,389,472 Bl 5/2002 Hughes et al.
6,493,744 B1 12/2002 Emens et al.

(Continued)

Banton
713/193
709/217

FOREIGN PATENT DOCUMENTS

WO 98/25373 6/1998

OTHER PUBLICATIONS

Response to Final Office Action in U.S. Appl. No. 12/370,047 issued
Mar. 14, 2012, mailed May 8, 2012, 9 pages.

(Continued)
Primary Examiner — Samson Lemma

(57) ABSTRACT

A network server may discourage inappropriate use. Files
may be altered in such a way as to not noticeably affect
acceptable, desired file types, but to substantially corrupt
undesirable file types. Every file copied to or from a memory
of a server may be affected, or the method may be applied
only to selected files or types of files. In particular, files that
may be corrupted by alternation include executable software
files and compressed files, which may be fault intolerant.
Fault tolerant files, which may include text and graphics files,
may not be noticeably affected. In some cases, copyrighted
files, media files, and/or other files are altered to prevent
undesirable distribution.

20 Claims, 2 Drawing Sheets

o

31

42

cLosEFILE

FIISH

US 8,832,849 B2

Page 2
(56) References Cited 2006/0143361 Al 6/2006 Kottapalli et al.
U.S. PATENT DOCUMENTS OTHER PUBLICATIONS
6,591,367 Bl 7/2003 Kobata et al. Supplemental Response to Final Office Action in U.S. Appl. No.
6,704,872 Bl 3/2004 Okada 12/370,047 issued Mar. 14, 2012, mailed Jun. 14, 2012, 8 pages.
6,972,856 B1* 12/2005 Takahashi 358/1.14 Final Office Action in U.S. Appl. No. 12/370,047 issued Mar. 14,
7,051,362 B2 5/2006 Shuster 2012, 6 pages.

7,493,660 B2 2/2009 Shuster
2002/0083070 Al 6/2002 Shuster * cited by examiner

U.S. Patent Sep. 9, 2014 Sheet 1 of 2 US 8,832,849 B2

13

15

Fig. 1 7

U.S. Patent Sep. 9, 2014 Sheet 2 of 2 US 8,832,849 B2

Fig. 2 20 30
/ / Fig. 3

SELECT FILE IN
MEMORY

A

OPEN AND READ
DIRECTORY

32

CHARACTERIZE
FILE

SET Al
BABOF
MINSIZE

OPEN FILE

37

SELECT
ALTERATION
ALGORITHM

SELECT NEXT

ALTER FILE IN
MEMORY

FINISH

42

Yes CLOSE FILE

INCREMENT i FINISH

FLIP BIT OF
[(A*)+BABOFITH
BYTE

US 8,832,849 B2

1
COMPUTER DATA OBJECT MODIFICATION
BASED ON DATA TYPES IN A NETWORKED
ENVIRONMENT

CROSS-REFERENCE TO RELATED
APPLICATION

This present application is a continuation of U.S. applica-
tion Ser. No. 12/370,047, filed Feb. 12, 2009, which is a
continuation of U.S. application Ser. No. 11/356,575, filed
Feb. 17, 2006 (now U.S. Pat. No. 7,493,660), which is a
continuation of U.S. application Ser. No. 09/859,948, filed
May 16, 2001 (now U.S. Pat. No. 7,051,362), which claims
priority to U.S. Provisional Appl. No. 60/204,994, filed May
16, 2000; the disclosures of each of the above-referenced
applications are incorporated by reference herein in their
entireties.

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates to methods and systems for
operating a server connected to a wide area network, such as
the Internet, and particularly to a method and system for
receiving, serving, and storing files in response to requests
from users, whereby inappropriate use of the server, such as
illegal copying and distribution of copyrighted content, may
be selectively discouraged.

2. Description of Related Art

Publicly accessible servers, in particular servers that pro-
vide storage space for no charge, such as servers on free web
hosts, are often used inappropriately in violation of agreed
terms of service and copyright laws for the distribution of
copyrighted files such as software, music, image and video
files. Such file types often consist of or contain illegally
copied content. The illegally copied content may lend an
undesirable taint to operators of web hosting services who do
not wish to be perceived as encouraging, condoning, or par-
ticipating in copyright violations. Additionally, the storage
and exchange of these illegal or otherwise inappropriate files
consumes bandwidth and other resources needed for more
appropriate uses, thereby choking and discouraging the uses
that the web server is intended to serve. Another injury that
may be caused by inappropriate or illegal copying is dispro-
portionately heavy use of the server by relatively few users,
thereby reducing performance for all users, and reducing the
number of subscribers that the hosting service attracts. A
related problem is the devaluation of advertising space as a
result of people downloading such files, and the potential for
alienating advertisers who have purchased advertising space
on the servers that are being used inappropriately.

Therefore, a method and system is needed to discourage
inappropriate use of publicly available, network-connected
server space, without adversely affecting intended uses of the
server space or restricting public access. The method and
system should integrate seamlessly and cost-effectively with
existing network protocols and server software and hardware.

SUMMARY OF THE INVENTION

A method and system for operating a network server are
provided, whereby files on the server are altered in such a way
s0 as to essentially not aftfect appropriate, desired file types in
any noticeable way, and to corrupt inappropriate, undesirable
file types. As used herein, to “corrupt” a file means to alter it
so that it becomes substantially unusable for its intended
application. For example, a corrupted executable file cannot

20

25

30

35

40

45

50

55

60

65

2

be executed without generating a fatal error or otherwise
failing to operate in the intended manner; music in a corrupted
music file cannot be played; and files within a compressed
multi-part file cannot be extracted and/or used.

The method may be applied to every file copied to or from
a memory of the server. In the alternative, the method may be
applied only to selected files or types of files on the server. In
particular, the files corrupted by altering according to the
invention may be executable software files and compressed
files that are generally not fault-tolerant. Fault tolerant files,
such as uncompressed text and graphics files in common
Internet-compatible formats, are not noticeably affected.
Consequently, the invention is particularly useful for operat-
ing a server wherein the desired or acceptable file types are
fault-tolerant, and the undesired file types are generally not
fault-tolerant. The destructive alteration of undesirable file
types may be made difficult or impossible to reverse by any-
one lacking knowledge of the corruption scheme. The net-
work server will therefore no longer be useful for storing or
transferring undesirable files, and such use will be discour-
aged. System bandwidth is thereby conserved, and the
response of the server to appropriate uses can be greatly
improved. Furthermore, the method can be implemented in a
variety of different systems without consuming significant
system resources.

According to an embodiment of the invention, the server is
connected through a network, such as the Internet, to a plu-
rality of client devices, and is configured to transfer informa-
tion between any selected one of the client devices and a
memory for static storage of information. The method com-
prises the steps of selecting a file residing in a memory of the
server for alteration by applying predetermined screening
rules, and altering a relatively small discrete portion of the
identified file according to an algorithm comprising a set of
predetermined alteration rules. The predetermined alteration
rules are such that the information value and functionality of
fault-tolerant files is essentially unchanged, while fault-intol-
erant files are essentially rendered unusable. The amount of
data altered in the file may be as small as a single bit. The
alteration step may be performed as files are served from the
server or as they are transferred to the server. In the alterna-
tive, the alteration step may be performed while the files are
stored in a static server memory, such as by using a disk
crawling method.

Preferably, the alteration rules provide for placing any
altered bits towards the end of the file, where they are least
likely to affect appropriate file types, for example, HTML and
graphics files. The location for placing altered bits may be
selected at random, so that the altered file cannot be repaired.
In the alternative, a complex quasi-random algorithm may be
used to select the location of the altered bits, so that the file
can only be repaired by someone who knows the algorithm. A
quasi-random algorithm has the added benefit of making
difficult the detection of the precise algorithm used via a
comparison of various files pre- and post-alteration. The alter-
ation may be made “invisible”—i.e., inconsequential—to
appropriate file types, by determining the manner in which
the alteration is made based on a putative file type. For
example, a harmless comment, such as “<!>"may be inserted
into a file with a “htm” extension (signifying an HTML
formatted file). Insertion of inconsequential information
based on putative file type is particularly effective in discour-
aging deceptive naming practices, whereby undesired file
types are disguised by assigning a name signifying a desired
type of file to an undesired file. Traceable information may be
inserted into the files during alteration, to facilitate tracking
future copying of the file. Similarly, files may be “flagged” so

US 8,832,849 B2

3

that they are not inadvertently altered more than once. In an
embodiment of the invention, selected types of bytes, such as
non-text characters, are deleted or altered, to discourage dis-
guising undesirable file types as acceptable file types, such as
“1xt” or “.htm” files. These and other alteration rules may be
used and combined in various ways in an alteration method
according to the invention.

According to a related embodiment of the invention, a
system comprises a server having an application that per-
forms one of the embodiments of the method according to the
invention. A more complete understanding of the method and
system for operating a network server to discourage inappro-
priate use will be afforded to those skilled in the art, as well as
a realization of additional advantages and objects thereof, by
a consideration of the following detailed description of the
preferred embodiment. Reference will be made to the
appended sheets of drawings which will first be described
briefly.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a system diagram showing an exemplary system
for implementing a method according to the invention, and its
relationship to other elements.

FIG. 2 is a flow diagram showing exemplary steps for
performing a method according to the invention in general.

FIG. 3 is a flow diagram showing exemplary steps for
performing an alteration algorithm according to an exem-
plary embodiment of the invention.

DETAILED DESCRIPTION OF THE PREFERRED
EMBODIMENT

The present invention provides a method and system oper-
able at an application or higher network level for discourag-
ing inappropriate use of network resources. In the detailed
description that follows, like element numerals are used to
describe like elements shown in one or more of the figures.

Referring to FIG. 1, system 10 comprises a server 16 and an
application 14 executing on the server. Server 16 is typically
a general purpose computer configured for serving informa-
tion to multiple users across a network, but may comprise any
high-level computing device capable of performing the
method described herein. Application 14 comprises a pro-
gram of instructions for performing the method described
herein, and may additionally comprise instructions for per-
forming other server functions as known in the art.

Server 16 is connected to network 13 by communication
link 15 and to a memory 18 containing at least one file 17.
Memory 18 is any device, such as a hard drive or array of hard
drives, tape drive, optical disk drive, or similar device, for
static storage of information; and particularly, devices
capable of accessing and storing massive amounts of high-
level data for indefinite periods. In an embodiment of the
invention, memory 18 is physically adjacent to server 16 and
connected to the server through a server-operated bus 19.
Server 10 controls access by users, such as user 11 connected
to network 13, to memory 18. File 17 is a set of high-level data
encoded in a finite number of discrete information bits, such
as binary bits. A plurality of files such as file 17 are used to
exchange high-level information between a plurality of users,
such as user 11, connected to network 13 using client devices
such as terminal 12 and a communication link 15. Network 13
may be a wide area network, such as the Internet, a local area
network, or a combination of different types of networks. The
network may be operated by various protocols, such as TCP/

20

25

30

35

40

45

50

55

60

65

4

IP. The system and method according to the invention are not
limited to application with any particular type of network,
protocol, or client device.

Referring to FIG. 2, exemplary general steps of a method
20 for discouraging inappropriate use of memory connected
to a network are shown. An initial step of method 20 is the
selection at step 21 of a file in the server memory for alter-
ation. In an embodiment of the invention, alteration is applied
to all public files stored, or to be stored, in the server’s static
memory storage. Generally, the method may be effectively
applied to all files received from public sources for storage on
the server. That is, files may be selected without determining
whether the file is an inappropriate type of file or an appro-
priate type of file. Of course, files received from trusted
sources, such as files created by a network administrator, are
preferably not subjected to alteration.

In the alternative to applying the method to all files in the
server’s public storage areas, the method may be applied to
files of a selected type, such as “.mp3” files. However, file
types may generally be disguised, so the latter embodiment
may suffer from the disadvantage of being easily circum-
vented. Furthermore, ifthe file type can indeed be reliably and
quickly determined, it may be simpler and more effective to
simply delete or refuse to transfer the offending file. However,
method 20 provides advantages relative to a method based on
a “detect and destroy” strategy, when it is not feasible to
automatically determine with certainty that an unknown file is
actually inappropriate. The advantages of method 20 may
accrue whether or not it is feasible to automatically identify
files that are suspected of being inappropriate. When sus-
pected files may be identified, the public files may be
screened or filtered in various ways to identify them as can-
didates for alteration according to method 20. For example,
only files greater than a predetermined size, such as ten kilo-
bytes or one-hundred kilobytes, may be subject to alteration.
For further example, a portion or all of each file may be
analyzed to identify patterns typical of particular file types,
and only files displaying patterns typical of inappropriate file
types may be selected for alteration. In the alternative, files
that display patterns typical of appropriate file types may be
spared alteration. Of course, files that are self-identified as
being of an offending type, for example “.mp3” files, may
simply be deleted.

It may be further advantageous to avoid altering any par-
ticular file more than once. In some embodiments, the alter-
ation algorithm will reverse a particular bit or bits of the file.
Employing the same algorithm again may restore the file to its
original state, which is generally not desirable (although
reversibility may be advantageous when restoration of an
altered file is specifically sought). In other embodiments, the
original file may not be restored when the alteration algorithm
is employed a second time; however, repeated alteration may
cause appropriate file types to become corrupted or notice-
ably degraded. Repeated alteration of the same file may be
avoided by marking the file with a flag indicating that the file
has been altered. Files marked with the flag are then excluded
from further alteration. The flag may reside in the file itself.
For example, an unusual bit pattern may be placed at a speci-
fied location in the file. In the alternative, the flag may be
associated with the file elsewhere in the storage system. For
example, the file attributes may be changed, or the file may be
moved to a “read-only” directory containing only public files.

Whether or not applied to all public files in the server’s
static storage, or to a subset of public files, method 20 may
then be triggered by various events. For example, the receipt
of'a public request for a file transfer may trigger performance
of' method 20 upon the requested file. If more than one file is

US 8,832,849 B2

5

requested, each file requested for transfer may be selected in
turn. As used herein, “transfer” includes both the transmis-
sion of a file from a public memory to a client device, and
storage in the public memory of a file received from a client
device. Method 20 may be triggered by both types of trans-
fers, but may operate more efficiently if operated upon files
when received, before the files are placed in static storage.
According to this embodiment, the files will be stored in an
altered state. If efficiency is not a primary concern, it may, in
the alternative, be advantageous to alter files only as they are
served in response to a request. Altering files upon request
may require repeated processing of the same file (that is, of
files that are requested repeatedly), but can provide the advan-
tage of preserving an unaltered copy of every file in the
server’s storage. Inthe alternative, both an unaltered copy and
an altered copy of every file may be stored, with only the
altered copy available for public use. In another alternative
embodiment, any unaltered files in the server’s public storage
area are periodically identified and altered, with or without
preserving an unaltered copy. For example, at periodic inter-
vals, a “disk-crawling” program may be executed on the
server, where the disk-crawling program will alter all (or a
selected portion of) files stored in the server’s static memory
at any particular time.

At optional step 22, the selected file may be characterized,
that is, tentatively identified as being of a particular file type.
Characterization may be performed as part of a selection step,
or may be performed after a file is selected. In either case, the
process of characterization will be the same or similar.
Selected attributes and/or contents of the file are read and
characteristic data patterns are recognized. The data patterns
and file attributes are compared against a database of
attributes and patterns as related to file types, from which a
suspected file type is identified. Step 22 provides the advan-
tage of facilitating selection of more targeted alteration algo-
rithms having a higher probability of corrupting inappropri-
ate file types while not adversely affecting appropriate file
types. However, performance of step 22 may consume sub-
stantial resources and may require a higher initial investment
in programming. Accordingly, for simpler, low-cost imple-
mentation, step 22 may be omitted.

One likely use for file characterization is detection of com-
pressed files. Many inappropriate files comprise a plurality of
files compressed into a single file. The characterization step
may detect such compressed files, and also may identify the
location of the individual files within the compressed file.
Each individual file in the compressed file may then be tar-
geted for alteration. Of course, if it may be determined with
certainty that a compressed file is of an inappropriate type, the
compressed file may simply be deleted. However, on some
server systems compressed files may comprise both appro-
priate and inappropriate file types.

At step 23, an alteration algorithm is selected. A single
alteration algorithm may be applied to every file selected for
alteration. In the alternative, an algorithm may be selected
from a library of alternative algorithms, depending on factors
such as the suspected file type. Effective operation of method
20 essentially depends on selection of an appropriate alter-
ation algorithm. At the same time, various alternative rules
may be equally or comparably effective in selectively cor-
rupting only inappropriate file types. Therefore, the rules
described herein are merely exemplary in nature, and are not
intended to limit the scope of the invention.

Alteration algorithms in general comprise a set of rules
and/or a sequence of steps for selecting one or more binary
bits of a file. Binary bits, of course, have only two possible
states, so once the appropriate bits have been selected, alter-

20

25

30

35

40

45

50

55

60

65

6

ation at step 24 is performed by merely reversing their state,
that is, by changing a zero (0) bit to one (1), and vice-versa.
Bit reversal may be accomplished, for example, by perform-
ing an exclusive OR operation on a selected byte of the file
and an alteration byte. For more specific example, in an
eight-bit byte environment, an exclusive OR with the byte
“00000001” will reverse the lowest-value bit of any compari-
son byte. Optionally, the altered file may be stored in the
server’s static storage, with or without retaining a copy of the
unaltered file. After the desired bits have been altered, method
20 may be repeated for the next file, as indicated at step 25.

In an Internet (TCP/IP) environment, it is preferable to
select the bits to be altered occurring a specified number of
bytes, for example, ten kilobytes, after the first byte of the file.
Many file formats are less fault-tolerant near the beginning of
the file. In addition, it may be desirable to ensure that the
checksum for the early part of the file is not changed. Files
smaller than the specified number, e.g., less than ten kilo-
bytes, may be excluded from being altered. In a related
embodiment, the alteration bit or bits are selected in proxim-
ity to the end of the file, such as within ten kilobytes ofthe end
of the file.

To prevent circumvention and/or reversibility of the alter-
ation, the alteration algorithm may provide for selecting an
alteration bit or bits at random from the file to be altered. For
example, a random number generator may be used to select a
byte between ten and a thousand kilobytes. The random selec-
tion may then be repeated to alter as many bits as desired.
Technically, most software-driven random number genera-
tors do not actually produce random numbers, because the
pattern of numbers produced will typically depend on a
beginning seed number of some kind. However, any given
number produced by such generators using a secret, indepen-
dently derived seed can be kept secret, i.e., cannot be deter-
mined in a second operation by an independent party. For the
purposes of the present invention, maintaining secrecy of the
seed number will ordinarily be sufficient to ensure an unpre-
dictable, seemingly random result when operating on the
same file. This randomness and unpredictability should be
sufficient to prevent circumvention of the alteration, and
actual randomness should not be required. Should a truly
random number be desired, however, hardware devices for
generating such numbers are available. It should be noted in
addition, that as a practical matter, the number produced by a
typical software-driven random number generator may not be
predicted or determined even by a system operator in posses-
sion of the seed number. Therefore, an alteration based on
such a generator may be practically irreversible even by the
system operator.

To make circumvention more difficult without destroying
reversibility, a quasi-random generator may be used for bit
selection. A quasi-random generator appears to generate a
random number, but actually, it does not. Instead, it operates
in a reversible way on selected information in or associated
with the file to produce a variable number. The same variable
number will be produced if the quasi-random operation is
performed again with the same input values. It may therefore
be desirable for the input variables to include a variable num-
ber that is only available to the system operator, as well as a
variable number derived from information in the file that is
altered. For example, the quasi-random generator may count
the number of 1°’s (i.e., bits having a value of 1) occurring in
the first ten kilobytes of the file, add a secret number from a
look-up table of random numbers based on the day and time
of alteration, raise the sum of the counted and secret numbers
to the 5/3 power, and multiply by pi. The number generated is,
of course, not random. However, it would be difficult for a

US 8,832,849 B2

7

party ignorant of the formula to determine how the number
had been generated and thereby generally circumvent the
alteration scheme, without possessing the formula employed.
The secret independent input variable, if used, additionally
makes circumvention difficult in the case of a particular file,
because the bits that may be altered during future processing
of a file cannot be determined by comparing a previously
altered file to an unaltered file. That is, different bits will be
altered each time the file is processed using the method.
Meanwhile, the quasi-random number may be easily deter-
mined by one in possession of the secret formula and look-up
table. Actual formulas may be considerably more complex
than the simple example provided, without departing from the
scope of the invention.

In an embodiment of the invention, the alteration algorithm
determines the method of making an alteration based on a
putative file type determined, for example, by the file name
extension, file header, or other information associated with a
file that purports to identity the file type. The selected alter-
ation is invisible, that is, inconsequential, to the file of the
purported type. One way to accomplish an inconsequential
alteration is to insert surplus or altered information in a format
that will be essentially ignored when present in files of the
purported type. For example, a comment “<!>” may be
inserted within a purported HTML file, such as a file named
with an “htm” extension. In the alternative, any character
contained within an existing comment field of a file type
supporting delimited comment fields, such as an HTML file,
may be changed, for example, a space may be changed to a
dash within a comment. Such changes will have no effect
whatever on the display or other use of the file, and only an
inconsequential impact on the raw information content of the
file. However, if a purported file with delimited comments is
actually some other type of file, for example, an executable
binary-coded file, the change will likely effectively corrupt
the file.

In a related embodiment using alteration based on putative
file type, the alteration algorithm identifies a byte of the file
for which a byte synonym exists in the codes of the appropri-
ate file types. A byte synonym is a byte having a different
value that is interpreted in the same way, or in a substantially
very similar way, as the original byte, when in a file of an
appropriate type. For example, a common graphics file format
may display the hexadecimal string “AE” in a similar manner
to the string “AF,” such as displaying a pixel having a color of
a slightly different shade. The alteration step 24 then com-
prises substituting at least one of the identified bytes with a
byte synonym, for example, exchanging “AE” for “AF.” This
is unlikely to noticeably affect the files of the desired type, but
will effectively corrupt other file types such as binary coded
files.

A related approach that may be embodied in an alteration
algorithm is to identify bytes that are not likely to be present
in files of desired, appropriate types, and altering or deleting
those bytes. For example, many common, appropriate file
types primarily comprise coded text, for example ASCII-
coded text characters. Selected or all non-text characters in
the file may be deleted or altered, such as, for example, by
changing non-text characters to the ASCII space (blank) char-
acter. Text files are thus likely to be essentially unaffected by
the alteration, while other file types may be corrupted. Similar
algorithms may be employed with other (non-ASCII or non-
text) coding schemes. It may be particularly preferable to
select a byte-type specific algorithm based on the indicated
file type. For example, if the file is named with a “txt” exten-
sion, then selection of a text-specific algorithm may be pre-

20

25

30

35

40

45

50

55

60

65

8

ferred. If the file is named with some other extension, for
example, a “gif” extension, then a different algorithm may be
employed.

According to another embodiment of the invention, the
alteration algorithm comprises a step of inserting traceable
identifying information into a file of an inappropriate type.
The identifying information may comprise any bit pattern
that is not present in the unaltered file and that is sufficiently
distinctive to uniquely identify the file. At the same time, the
bit pattern should not cause corruption of appropriate file
types. Preferably, the identifying information will not be
readily recognized as such by those not in possession of the
identifying algorithm. For example, a particular pattern of
bits may be distributed at specified, secret and/or random
locations in the file. The location of the identifying bits may
be recorded in a separate database, or otherwise determinable
with the use of a secret formula or secret data, for use in
subsequent law enforcement efforts.

Elements of the foregoing alteration algorithms may be
combined in various ways without departing from the scope
of the invention. For example, it may be preferable to com-
bine algorithms which select bytes towards the end of a file
with random or quasi-random bit selection and substitution of
selected non-text characters. One skilled in the art may devise
various other suitable combinations.

Referring to FIG. 3, exemplary steps comprising an alter-
ation algorithm 30 of a method according to an embodiment
of the invention are diagrammed. Algorithm 30 is especially
suitable for implementation as a periodically executed disk-
crawling application of general applicability to various file
types. It is designed to corrupt binary-coded files and com-
pressed files, while creating only relatively minor alterations
in text files and most graphics files. At a designated time, the
directory containing the public files to be altered is opened
and the directory contents are read at step 31. Preferably, the
directory containing the files to be processed is designated as
atemporary holding area and only contains files that have not
yet been processed.

At step 32, the alteration variables are initialized. In the
exemplary algorithm 30, the variables comprise an alteration
interval (“Al”), expressed as an integer number of bytes, such
as 750 kilobytes; a number of bytes after the beginning of the
file (“BABOF”), such as ten kilobytes, before which no alter-
ation is to occur; and a designated minimum file size (“MIN-
SIZE”), such as ten kilobytes. In algorithm 30, these variables
are held constant during the disk-crawling procedure, how-
ever, they may vary depending on parameters such as file size,
if desired.

At step 33, a file in the directory is opened. At step 34, the
number of bytes in the file are counted and compared to the
MINSIZE variable. If the number of bytes in the file is equal
or less than MINSIZE, the file is not altered, and the file is
then closed and saved at step 35, preferably in a different
directory. The termination condition is then checked at step
36, and if files remain to be processed, the next file is selected
at step 37, repeating the cycle beginning at step 33.

If the number of bytes in the file is greater than MINSIZE,
a counter variable (“1”) is reset to zero at step 38. Then, a
productof Al and I, plus BABOF, is computed at step 39. This
computed number is the location of the byte to be altered in
the current execution cycle, and is compared to the file length
at step 39. To prevent termination of the alteration loop in the
first cycle (i.e., when i=0 and the byte location therefore
equals BABOF), the MINSIZE variable is preferably greater
than or equal to the BABOF variable. Thus, if in the initial
cycle the file length is greater than or equal to BABOF (and in
subsequent cycles, if the file length is greater than or equal to

US 8,832,849 B2

9

BABOF plus each subsequent interval Al cumulative with
prior Al intervals), then a selected bit of the selected byte is
flipped at step 40. For example, the lowest-value bit of the
byte may be flipped. At step 41, the counter variable i is
incremented, such as by 1. The cycle of steps 39-41 are
repeated until the end of the file is indicated at step 39. The
altered file is then closed and saved, preferably in a different
file directory. The termination condition is then checked at
step 36, the next file selected at step 37, and the cycle repeated
beginning at step 33.

The cycle of steps 33-42 are repeated until all files in the
directory have been processed. After all files have been pro-
cessed, the termination condition is satisfied and the process
terminates at step 36. One skilled in the art may program an
application for performing the steps of algorithm 30 in vari-
ous ways.

Having thus described a preferred embodiment of a
method and system for operating a network server to discour-
age inappropriate use, it should be apparent to those skilled in
the art that certain advantages of the within system have been
achieved. It should also be appreciated that various modifi-
cations, adaptations, and alternative embodiments thereof
may be made within the scope and spirit of the present inven-
tion. For example, exemplary alteration algorithms have been
described, but it should be apparent that the inventive con-
cepts described above would be equally applicable to other
alteration algorithms. The invention is further defined by the
following claims.

What is claimed is:

1. A method, comprising:

a computer system inhibiting usage of data objects having

a first data type that is a prohibited data type, including
accessing a data object having a characteristic of a sec-
ond data type, wherein the first data type is distinct from
the second data type; and

based at least in part on the second data type, the computer

system using a data modification algorithm to create a
modified data object by modifying at least one bit of
information in the data object;

wherein the modified data object is usable as the second

data type, but is unusable as the first, prohibited data
pe.

2. The method of claim 1, wherein the data object is amedia
object, and wherein the computer system is configured to
serve media transmissions via a network.

3. The method of claim 1, further comprising the computer
system transmitting the modified data object to a user com-
puting device in response to a request.

4. The method of claim 1, wherein modifying the at least
one bit of information includes inserting tracking information
into the data object.

5. The method of claim 1, wherein modifying the at least
one bit of information in the data object comprises identifying
one or more specific portions of the data object and modifying
information in the one or more specific portions.

6. The method of claim 1, wherein creating the modified
data object includes overwriting the data object.

7. The method of claim 1, wherein the second data type is
an audio or video data type, and wherein the first, prohibited
data type is an executable data type.

8. The method of claim 1, wherein said accessing com-
prises analyzing one or more data patterns in the data objectin
order to determine the second data type.

9. The method of claim 1, further comprising receiving an
upload of the data object from a network and using the data
modification algorithm in response to the upload, wherein the
data object is a file.

10. A non-transitory computer readable storage medium
having stored thereon instructions that are executable to cause

10

the computer system to perform operations to inhibit usage of
data objects having a first data type that is a prohibited data
type, comprising:
receiving a transmission request for at least a first data
5 object;
analyzing a characteristic of the first data object to deter-
mine a second data type of the first data object; and
based at least in part on the determined second data type,
using a data modification algorithm to cause modified
information to be included in a transmitted version of the

10 first data object, wherein the modified information
allows the transmitted version of the first data object to
be usable as the second data type, but unusable as the
first, prohibited data type, wherein the first data type is

s distinct from the second data type.

11. The non-transitory computer readable storage medium
of claim 10, wherein the second data type includes com-
pressed media data.

12. The non-transitory computer readable storage medium
of claim 10, wherein analyzing the first data object is per-
20 formed in response to receiving the transmission request.

13. The non-transitory computer readable storage medium
of claim 10, wherein the operations further comprise, in
response to the transmission request, transmitting a data
stream that includes the transmitted version of the first data

»5 object to a remote client via a network.

14. The non-transitory computer readable storage medium
of'claim 10, wherein the data modification algorithm modifies
the at least one bit of information based on a size of the first
data object.

15. The non-transitory computer readable storage medium
of claim 10, wherein the operations further comprise analyz-
ing file system data for the first data object to determine the
second data type.

16. A system, comprising:

a processor;

a network interface device; and

a computer readable storage medium having stored thereon

instructions that are executable by the processor to cause
the system to perform operations to inhibit usage of data
objects having a first data type that is a prohibited data
40 type, comprising:
accessing a data object in response to a request;
analyzing a characteristic of the data object to determine
a second data type of the data object; and
based at least in part on the determined second data type,
45 using a data modification algorithm to create a modi-
fied data object by modifying at least one bit of infor-
mation in the data object, wherein the modified data
object is usable as the second data type, but is unus-
able as the first, prohibited data type, wherein the first
data type is distinct from the second data type.

17. The system of claim 16, wherein the operations further
comprise, in response to the request, transmitting the modi-
fied data object to a remote client via the network interface
device.

18. The system of claim 16, wherein the data modification
55 algorithm modifies the at least one bit of information based on

a file type associated with the data object.

19. The system of claim 16, wherein the data modification
algorithm includes identifying a portion of the data object that
has a greater fault-tolerance for being modified than another

60 portion of the data object.

20. The system of claim 16, wherein the operations further
comprise determining that a second data object has already
been modified in accordance with the data modification algo-
rithm, and in response, making no further modification to the

65 second data object.

30

35

50

