a2 United States Patent

Shuster et al.

US009007362B2

US 9,007,362 B2
Apr. 14,2015

(10) Patent No.:
(45) Date of Patent:

(54)

(76)

@
(22)

(65)

(1)

(52)

(58)

ADAPTABLE GENERATION OF VIRTUAL
ENVIRONMENT FRAMES

Inventors: Brian Mark Shuster, Vancouver (CA);
Aaron Burch, Vancouver (CA); Gary S.
Shuster, Fresno, CA (US)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35

U.S.C. 154(b) by 471 days.

Appl. No.: 13/352,311

Filed: Jan. 17, 2012

Prior Publication Data

US 2012/0188233 Al Jul. 26, 2012

Int. CL.
GO6T 15/00
GO6T 15/20
GO6F 3/00
U.S. CL
CPC . GO6T 15/20 (2013.01); GO6F 3/00 (2013.01);
GO6T 2200/16 (2013.01)
Field of Classification Search
CPC GOG6F 3/00; GO6T 15/20; GO6T 2200/16
USPC 345/419, 420, 473, 474, 475
See application file for complete search history.

(2011.01)
(2011.01)
(2006.01)

(56) References Cited

U.S. PATENT DOCUMENTS

6,313,838 B1* 11/2001 Deering 345/420
7,936,355 B2* 5/2011 Moravanszky etal. 345/473

* cited by examiner

Primary Examiner — Phu K Nguyen
(74) Attorney, Agent, or Firm — Jonathan Jaech; Snell &
Wilmer L.L.P.

(57) ABSTRACT

A virtual environment in generated in a server where at least
one object representative of an entity interacts with other
objects or attributes of the environment. A desired frame rate
for rendering the virtual environment is identified, and com-
pared to a maximum achievable frame rate at a client device.
If the maximum achievable frame rate is slower than the
desired frame rate, the number of objects displayed within the
virtual environment is modified, in accordance with one or
more rule sets, until the maximum achievable frame rate is at
or near the desired frame rate. In addition, a server may
provide and synchronize output for clients participating in the
virtual environment using different target frame rates.

17 Claims, 5 Drawing Sheets

200
202 f 204
/,_/__\ e N
/ N
- L USER
E % 2 —— INPUT 992
< = DEVICE
= z o N (226
£z el | &] [WAN Z 216 224
=0 W |- X 206
= w = O o
NI 3=
> x T oS 220
= | |EE W |58] C
i o) 2=
S O O S DISPLAY |
N
N 208 \210 212 \214

U.S. Patent Apr. 14,2015 Sheet 1 of 5 US 9,007,362 B2

[~ - T T T T T L
| | 2"° CLIENT
| DISPLAY |
| 106 |
| |
| |
| | INPUT CPU NETWORK ||
| | DEVICE 100 INTERFACE ||
110 —
— |
: | les
| MEM |
| 104 |
| | CLIENT

116

- I(_I-)J USER
=z hd — INPUT
W | ‘ w = DEVICE 222
= x| T (226
X | [2] [WANT] 21216 224
= O W [XX 206
wZ w = O o
e NE-IN 52

> P T < 220
= | |EE W58 C
% o) 2=
> &) o i — DISPLAY |-

N

N 208 \210 212 \214

U.S. Patent Apr. 14,2015 Sheet 2 of 5 US 9,007,362 B2
: 300
Fig. 3 i
IDENTIFYING, BY A COMPUTER, A 302
' ’ 400

TARGET FRAME RATE OF VIRTUAL
ENVIRONMENT OUTPUT, THE OUTPUT
COMPRISING A KNOWN NUMBER OF
VIRTUAL OBJECTS MODELED IN THE
VIRTUAL ENVIRONMENT AND INCLUDED
IN THE OUTPUT TO BE TRANSMITTED TO
A CLIENT DEVICE

y

DETERMINING, BY THE COMPUTER,
WHETHER A MAXIMUM FRAME RATE AT
WHICH THE CLIENT DEVICE IS CAPABLE

OF DISPLAYING THE VIRTUAL
ENVIRONMENT OUTPUT IS LESS THAN
THE TARGET FRAME RATE

~ 304

l

MODIFYING, BY THE COMPUTER, A
NUMBER OF OBJECTS IN THE VIRTUAL
ENVIRONMENT OUTPUT TO PREPARE
MODIFIED OUTPUT CONFIGURED FOR
ACHIEVING THE TARGET FRAME RATE
AT THE CLIENT DEVICE, IN RESPONSE
TO DETERMINING THAT THE MAXIMUM

FRAME RATE IS LESS THAN THE TARGET
FRAME RATE

~ 306

. Fig. 4

402
C

SELECTING OBJECTS FOR REMOVAL IN
ORDER OF A PREDETERMINED PRIORITY

v ~404

RETAINING ALL OBJECTS HAVING
PRIORITY ABOVE A THRESHOLD VALUE
IN THE MODIFIED OUTPUT, REGARDLESS
OF WHETHER OR NOT THE CLIENT
DEVICE CAN ACHIEVE THE TARGET
FRAME RATE FOR THE MODIFIED
OUTPUT

! f_406

DETERMINING WHICH OBJECTS TO
REMOVE FROM THE VIRTUAL
ENVIRONMENT OUTPUT AT LEAST IN
PART BASED ON A VIRTUAL DISTANCE
BETWEEN EACH OF THE OBJECTS AND
AN AVATAR FOR A CURRENT USER OF
THE CLIENT DEVICE

U.S. Patent Apr. 14,2015 Sheet 3 of 5 US 9,007,362 B2

500

N Fig. 5

502
C

DEFINING THE TARGET FRAME RATE IN RESPONSE TO
USER INPUT TO THE CLIENT DEVICE

l r504

MODIFYING THE TARGET FRAME RATE FOR AT LEAST
ONE CLIENT, BY PERIODICALLY REMOVING A NON-
CRITICAL FRAME FROM THE VIRTUAL ENVIRONMENT
OUTPUT TO PREPARE THE MODIFIED OUTPUT

l (506

DEFINING THE TARGET FRAME RATE DIFFERENTLY FOR
DIFFERENT CLIENT DEVICES BASED ON MAXIMUM
FRAME RATES FOR RESPECTIVE ONES OF THE
DIFFERENT CLIENT DEVICES

l (508

SERVING MULTIPLE OUTPUT STREAMS ACCORDING TO
DIFFERENT TARGET FRAME RATES FOR THE
RESPECTIVE ONES OF THE DIFFERENT CLIENT
DEVICES

l (510

SYNCHRONIZING THE DIFFERENT TARGET FRAME
RATES TO A BASELINE FRAME RATE OF THE VIRTUAL
ENVIRONMENT OUTPUT

U.S. Patent Apr. 14,2015 Sheet 4 of 5 US 9,007,362 B2

600

Fig. 6 ;
COMPONENT FOR IDENTIFYING A

/602

TARGET FRAME RATE OF VIRTUAL
ENVIRONMENT QUTPUT, THE OUTPUT PROCESSOR
COMPRISING A KNOWN NUMBER OF
VIRTUAL OBJECTS MODELED IN THE

604
-

606

VIRTUAL ENVIRONMENT AND INCLUDED (
IN THE QUTPUT TO BE TRANSMITTED TO

A CLIENT DEVICE NETWORK

\\ INTERFACE
612
COMPONENT FOR DETERMINING /608
WHETHER A MAXIMUM FRAME RATE AT
WHICH THE CLIENT DEVICE 1S CAPABLE /O
OF DISPLAYING THE VIRTUAL

ENVIRONMENT OUTPUT IS LESS THAN
THE TARGET FRAME RATE

614
COMPONENT FOR MODIFYING A /‘\
NUMBER OF OBJECTS IN THE VIRTUAL 610
ENVIRONMENT OUTPUT TO PREPARE

MODIFIED OUTPUT CONFIGURED FOR
ACHIEVING THE TARGET FRAME RATE
AT THE CLIENT DEVICE, IN RESPONSE
TO DETERMINING THAT THE MAXIMUM |~ 1~—516
FRAME RATE IS LESS THAN THE TARGET
FRAME RATE

U.S. Patent Apr. 14,2015 Sheet 5 of 5 US 9,007,362 B2

Fig. 8

Fig. 7 0

(JOO /-804

[702
COMSFI’ER-’I-I-QIT\ICC;%‘ AB\\C()(A)\I\SI:IF:{_IIETNETRD,E\'/I'IggGET COMPONENT FOR SETTING A TARGET
FRAME RATE FOR VIRTUAL FRAME RATE FOR VIRTUAL
ENVIRONMENT DATA RECEIVED FROM A ENVIRONMENT DATA RECEIVED FROM A
SERVER, THE DATA COMPRISING A SERVER, THE DATA COMPRISING A
KNOWN NUMBER OF VIRTUAL OBJEGTS KNOWN NUMBER OF VIRTUAL OBJECTS
MODELED IN THE VIRTUAL MODELED IN THE VIRTUAL
ENVIRONMENT AND INCLUDED IN THE ENVIRONMENT AND INCLUDED IN THE
DATA RECEIVED FROM THE SERVER

DATA RECEIVED FROM THE SERVER

704 l \\~812

DETERMINING, BY THE CLIENT DEVICE,

WHETHER A MAXIMUM FRAME RATE AT COMPONENT FOR DETERMINING
WHICH THE CLIENT DEVICE IS CAPABLE WHETHER A MAXIMUM FRAME RATE AT
OF DISPLAYING THE VIRTUAL WHICH THE CLIENT DEVICE IS CAPABLE
ENVIRONMENT DATA IS LESS THAN THE OF DISPLAYING THE VIRTUAL
TARGET FRAME RATE, FOR AT LEAST ENVIRONMENT DATA IS LESS THAN THE
ONE PORTION OF THE DATA TARGET FRAME RATE, FOR AT LEAST
ONE PORTION OF THE DATA
708 l
L 814
MODIFYING, BY THE CLIENT DEVICE, A 816 \
NUMBER OF OBJECTS IN THE VIRTUAL

ENVIRONMENT DATA TO PREPARE COMPONENT FOR MODIFYING A

MODIFIED DATA CONFIGURED FOR NUMBER OF OBJECTS IN THE VIRTUAL
ACHIEVING THE TARGET FRAME RATE ENVIRONMENT DATA TO PREPARE
AT THE CLIENT DEVICE, IN RESPONSE MODIFIED DATA CONFIGURED FOR
TO DETERMINING THAT THE MAXIMUM ACHIEVING THE TARGET FRAME RATE

FRAME RATE IS LESS THAN THE TARGET AT THE CLIENT DEVICE, IN RESPONSE
FRAME RATE TO DETERMINING THAT THE MAXIMUM
FRAME RATE IS LESS THAN THE TARGET
FRAME RATE
806
808 (
/
/o NETWORK /802
INTERFACE
PROCESSOR

K 810

US 9,007,362 B2

1
ADAPTABLE GENERATION OF VIRTUAL
ENVIRONMENT FRAMES

CROSS-REFERENCE TO RELATED
APPLICATION

This application claims priority pursuantto 35 U.S.C. §119
(e) to U.S. provisional application Ser. No. 61/433,073, filed
Jan. 14, 2011, which is hereby incorporated by reference, in
its entirety.

BACKGROUND

1. Field

This application relates to methods and systems for hosting
a multi-user virtual environment, and to using data for a
multi-user virtual environment provided by a host computer.

2. Description of Related Art

Virtual environments, such as those operated on the Uth-
erverse™ VWW platform or on Linden Lab’s Second Life,
attempt to model the virtual environment after that of the real
world. Just like in the physical world, a single person is
typically represented by a representative element, such as an
avatar. Some virtual environments are rendered in a manner
that does not render an avatar for the player, instead present-
ing the environment as if viewed through the player’s eyes. In
such environments, other players and/or non-player elements
are ableto recognize the player’s avatar, although the player’s
own avatar is invisible or rendered partially to the player.
Such a rendering scheme mimics the actual point of view
through human eyes.

A virtual environment, virtual world, virtual reality, and
similar terms may be used to refer to a computer process
modeling an interactive, multi-dimensional (typically three
or two geometric dimensions plus a time dimension) model
hosted by one or more computer servers in communication
with multiple client devices operated by different users. Such
a computer process may also be described as a multiplayer
online game or similar terms. The computer server may oper-
ate as an aggregation engine that aggregates input from mul-
tiple client devices and serves aggregated output to the par-
ticipating clients at periodic intervals. Each instance of
aggregated output may be referred to as a frame, and more
specifically as a “virtual environment frame”; typically, how-
ever the aggregated output is not formatted as a conventional
video frame. Instead, each virtual environment frame may
define a state of the modeled environment at a particular point
in time, with reference to locations and/or objects in the
modeled environment for which geometric a graphic texture
data is stored locally at each client. The virtual environment
frame may also include object geometric data or textures for
new objects that have not yet been stored at a local client, and
other information. Each client device may receive the virtual
environment frame and render one or more video frames
displaying a viewpoint of the virtual environment that may be
controlled locally at the client device. The frequency at which
the virtual environment server aggregates the input and serves
a corresponding virtual environment frame may be referred to
as a frame rate.

The complexity of generating a rendering a viewpoint of a
modeled environment for output at the client may vary based
on events and location in the virtual world. Therefore, a client
device may sometimes be unable to generate and render cer-
tain output frames as quickly as it receives each virtual envi-
ronment frame from the server. This failure may cause per-
ceptible lag at the client, resulting in loss of synchronization
with the online multiplayer process. At other times, the same

20

25

30

35

40

45

50

55

60

65

2

client device may be able to generate and render output
frames as quickly as necessary to maintain synchronicity. It
would be desirable, therefore, to provide a solution to enable
client devices to keep up with the hosted process regardless of
the complexity of a particular scene, without adversely
impacting the user experience of the online environment gen-
erally.

SUMMARY

Methods and systems for adaptable generation of virtual
environment frames are described in detail in the detailed
description, and certain aspects are described or summarized
below. This summary and the following detailed description
should be interpreted as complementary parts of an integrated
disclosure, which parts may include redundant subject matter
and/or supplemental subject matter. Omissions in either sec-
tion do not indicate priority or relative importance of any
element described in the integrated application. Differences
between the sections may include supplemental disclosures
of alternative embodiments or additional details, or alterna-
tive descriptions of identical embodiments using different
terminology, depending on the nature of the differences as
should be apparent from the applicable context.

In an aspect, a method for adaptable generation of virtual
environment frames in a virtual environment may be per-
formed by a computer, comprising operations as follows. The
computer may comprise a virtual environment server, a client
computer, or some combination of client and server comput-
ers. The method may include identifying, by the computer, a
target frame rate of virtual environment output, the output
comprising a known number of virtual objects modeled in the
virtual environment and included in the output to be transmit-
ted to a client device. The method may further include deter-
mining, by the computer, whether a maximum frame rate at
which the client device is capable of displaying the virtual
environment output is less than the target frame rate. The
method may further include modifying, by the computer, a
number of objects in the virtual environment output to pre-
pare modified output configured for achieving the target
frame rate at the client device, in response to determining that
the maximum frame rate is less than the target frame rate.
Accordingly, the client may have an increased likelihood of
experiencing the target frame rate without un undesired deg-
radation of content.

In an aspect, the method may include the computer select-
ing objects for removal in order of a predetermined priority. In
addition, the method may include the computer retaining all
objects having priority above a threshold value in the modi-
fied output, regardless of whether or not the client device can
achieve the target frame rate for the modified output. In an
aspect of the method, the objects may include at least one
avatar displayed within the virtual environment subject to
having its display status altered in order to achieve a target
frame rate. In another aspect, the objects may include at least
one non-avatar prop displayed within the virtual environment
subject to having its display status altered in order to achieve
a target frame rate. Instead of, or in addition to using a pre-
determined priority, the method may include determining
which objects to remove from the virtual environment output
at least in part based on a virtual distance between each of the
objects and an avatar for a current user of the client device.

In another aspect, the method may include defining the
target frame rate in response to user input to the client device.
In addition, the method may include modifying the target
frame rate for at least one client, by periodically removing a
non-critical frame from the virtual environment output to

US 9,007,362 B2

3

prepare the modified output. Accordingly, the method may
include defining the target frame rate differently for different
client devices based on maximum frame rates for respective
ones of the different client devices. In such case, the method
may include serving multiple output streams according to
different target frame rates for the respective ones of the
different client devices. In addition, the method may include
synchronizing the different target frame rates to a baseline
frame rate of the virtual environment output.

In related aspects, an apparatus for adaptable generation of
virtual environment frames may include a processor coupled
to a memory and a network interface, the memory holding
instructions that when executed by the processor cause the
apparatus to perform any of the methods and aspects of the
methods summarized above or described elsewhere herein.
Certain aspects of such apparatus (e.g., hardware aspects)
may be exemplified by equipment such as a network interface
for network communications. Similarly, an article of manu-
facture may be provided, including a non-transitory com-
puter-readable storage medium holding encoded instructions,
which when executed by a processor, may cause a specialty
device configured as an virtual reality server or client node to
perform ones of the methods and aspects of the methods
described herein.

Further embodiments, aspects and details of the method
and apparatus for adaptable generation of virtual environment
frames based on client processing metrics or other feedback
are presented in the detailed description that follows.

BRIEF DESCRIPTION OF THE DRAWINGS

The present technology, in accordance with one or more
various embodiments, is described in detail with reference to
the following figures. The drawings are provided for purposes
of illustration only and merely depict typical or example
embodiments of the technology. These drawings are provided
to facilitate the reader’s understanding of the technology and
shall not be considered limiting of the breadth, scope, or
applicability of the technology.

FIG. 1is a block diagram showing an example of a system
for adaptable generation of virtual environment frames in a
multi-user virtual environment.

FIG. 2 is a flow chart showing further aspects of a system
for adaptable generation of virtual environment frames in a
multi-user virtual environment.

FIGS. 3-5 are flow charts illustrating aspects of a method
for adaptable generation of virtual environment frames in a
multi-user virtual environment, including operations per-
formed by a computer server, computer client, or both.

FIG. 6 is a block diagram illustrating aspects of an appa-
ratus for adaptable generation of virtual environment frames
in a multi-user virtual environment.

FIG. 7 is a flow chart illustrating aspects of a method for
adaptable generation of virtual environment frames in a
multi-user virtual environment, including operations per-
formed by a computer client.

FIG. 8 is a block diagram illustrating aspects of an appa-
ratus for adaptable generation of virtual environment frames
in a multi-user virtual environment.

DETAILED DESCRIPTION

The present disclosure is directed to adaptable generation
of virtual environment frames in a virtual environment, for
example by dynamically altering rules for rendering the vir-
tual environment to maintain a desired frame rate or to enable

20

25

30

35

40

45

50

55

60

65

4

participation in a multi-user process by clients rendering the
environment at different frame rates.

It should be understood in this discussion that certain terms
are used for convenience, but that the scope of the disclosure
is not to be limited by the common definition of such terms.
The following terms are used herein: “Avatar” typically refers
to a personal representation of a user within a virtual world,
which may or may no resemble a likeness of a human being or
fantasy creature. As used herein, the term additionally
includes any element of a virtual world that represents a
personal projection of a user and is controlled at least in part
by that user. “Operator” or “user” means a person, a related
group of people, one or more computer processes, or a com-
bination of one or more persons and one or more computer
processes, which (solely or in concert) control a user account.
“User account” means an account for access to a virtual
world, including an account that corresponds to one or more
virtual representatives of that account. A user account may
also include an account associated with the operation of a
business or other entity within a virtual world. It should also
be understood that the display of each avatar may include an
avatar located in a different part of the virtual world than other
avatars, often sufficiently virtually distant that the commonly-
controlled avatars cannot see or hear each other. The term
“rendering” is used in two ways in this disclosure. “Render-
ing”, when the context requires, refers specifically to the
quality with which graphic elements are drawn, or rendered
for output on a computer graphics display. When the context
requires, however, the term may refer to the overall display of
the virtual environment.

A critical element for avoiding motion sickness (particu-
larly in environments rendered in 3D) and for rendering a
pleasing and realistic visual representation of a virtual envi-
ronment is the “frame rate”. The frame rate is the rate at which
the elements of the virtual environment are updated in peri-
odic cycles, which may be but is not necessarily synchronized
to a video frame rate. The existing art treats the frame rate as
a single number, the rate at which the entire rendering of the
environment is updated. It is known in the art to transmit only
the changed portions of the environment. This type of partial
update has been widely used in the field of moving image
compression.

In most games and other virtual environments, the design-
ers are able to predict and control the way the user interacts
with the environment, the elements within the environment,
the number and type of inputs to the environment, and in
many cases even the hardware used for rendering the envi-
ronment. However, as systems are created that attempt to
model the real world, or to import some of the elements of
choice present within the real world into an unreal environ-
ment, the designers lose the ability to control or predict how
users will interact with the environment, or even which ele-
ments will be present within the environment. As the elements
in the virtual environment become more freely elected, cre-
ated, or modified by users, the creators of the virtual environ-
ment have an option not readily available within the real
world: alteration of the laws governing perception and phys-
ics.

FIG. 1 is a block diagram showing an example of virtual
reality environment system 100 such as may be used to per-
form methods described herein. System 100 may comprise,
for example, a computer 101 including at least a processor or
CPU 102 and a memory 104 for holding data and program
instructions. When executed by the CPU 102, the program
instructions may cause the computer 101 to perform one or
more method and operations as disclosed herein. The com-
puter 101 may further comprise or be operatively coupled to

US 9,007,362 B2

5

a display device 106 for providing a graphical or text display
of software output, for example, a computer monitor or flat
panel LCD display device. The computer 101 may further
comprise or be operatively coupled to a user input device 110,
for example a keyboard, mouse, keyboard, microphone,
touchscreen, touchpad, or some combination of these or simi-
lar input devices. The computer 101 may be in communica-
tion with a Wide Area Network (WAN) 112, for example, the
Internet, via a network interface component 108.

The computer 101 may receive data including user input
from a client component 116, which may be in communica-
tion with the computer 101 via the WAN 112 or other com-
munication network. A client component may include hard-
ware elements similar to computer 101, but in a form factor
for client use. A client device may include, for example, a
personal computer, a laptop computer, a handheld computer
such as a smart phone or the like, a notepad computer, or a
game console. The computer 101 may provide output to the
client 116 in response to user input. Generally, the computer
101 may host multiple clients, for example the second client
114, which may be configured similarly to the first client. The
output may include a virtual world interface for accessing a
virtual model of a place, including operating an avatar within
the model, editing the model or objects contain in the model,
or otherwise interacting with the virtual model. The model
may be a three-dimensional (3-D) model, or a quasi-3-D
model resembling a 3-D model in some respects, but limited
by retaining essential characteristics of a two-dimensional
model, sometime referred to as a 2-D world. In a separate
aspect, the output may include video data for display on one
or more surfaces, using a flat panel device, projector or other
display technology, at each of the client 116 and second client
114.

The system 200 shown in FIG. 2 may include one or more
algorithms for performing operations of the methods
described herein, stored in a memory of a virtual world server
202, which may be accessed via a wide area network 206 or
other communications network or combination of networks
by multiple clients 204 (one of many shown). A client 204
may comprise a single device or multiple devices linked via a
user account; for example, a personal computer, laptop com-
puter, notebook computer, notepad computer, smart phone,
gaming device, or any combination of two or more of the
foregoing devices controlled by a single user and connecting
to the server 202 using a single user account. The client 204
may receive user input from one or more user input devices
218, for example, a keyboard, mouse or other pointing device,
touchscreen, microphone, camera array (e.g., Microsoft™
Kinect™ or similar device), or other input device. The user
input device 218 may provide user input signals to a player
interface module, which may interpret the signals as com-
mands or other input to a virtual environment process, and
provide the command or other input to a portal component
212 of a virtual environment server 202.

The client 204, using an output generator module 214, may
provide a video output signal to a display device 220, which
may display one or more windows 222 showing a view of a
virtual environment responsive to user input from the input
device 218. The virtual environment may include a first avatar
224 operated in response to user input provided to the virtual
environment server 202 by the client 204, and a second avatar
226 operated in response to a different input. The output
generator module 214 may receive data from the virtual envi-
ronment server 202 defining a current state of the virtual
environment. The output module may generate and render
video data based on the input from the server 202 using
viewpoint and other display settings determined at the client

20

25

30

35

40

45

55

60

6

device. The output module may provide a video signal to a
display device. It should be appreciated that the client device
204 may also include an audio output device for outputting an
audio track that is synchronized with the video output.

The virtual environment server 202 may include several
interactive modules that may be implemented using one or
more processors coupled to a computer memory holding pro-
gram instructions. These modules may include a portal 212
that manages communication with multiple clients. The por-
tal may authenticate users attempting to access the virtual
environment, receive input from authenticated users and
direct it to a virtual environment engine module 208, and
direct output from a virtual environment engine module 208
via a frame controller module. The virtual environment
engine module 208 may aggregate user inputs for avatar
actions in the virtual environment and calculate a current
output state of the virtual environment, for example using a
physics model or modified physics model to simplify calcu-
lations or obtain a certain special effect. The virtual environ-
ment engine may perform the aggregation and calculation at
a particular frequency, which may be referred to as a frame
rate. So, for example, the virtual environment engine may
cache user inputs for a period of time, for example Yo of a
second, and the end of which the engine may use the cached
input as input for a calculation of virtual environment output
for a corresponding frame, reset the user input cache, and
begin caching new user input for the next frame.

The virtual environment server may include a frame con-
troller module 210, which may include one or more proces-
sors programmed to perform frame control according to the
more detailed algorithms disclosed herein. Although illus-
trated as a separate module, it should be appreciate that the
frame controller module may be integrated into another mod-
ule of the virtual environment server 202. It should be further
appreciated that the virtual environment server may include
other modules that are not illustrated in FIG. 2.

The frame controller 210 may operate to control frame data
passed to each client based on capabilities of a destination
client or group of destination clients. The controller 210 is not
limited to control of virtual environment frame rate only, and
may control other performance-related elements of an output
stream in addition to, or instead of, a frame rate. The module
210 may create multiple output streams from a single input
stream received from the virtual environment engine. For
example, the frame controller module 210 may include a first
(“fast™) output stream for client devices having high perfor-
mance ratings above a defined upper threshold, a second
(“slow”) output stream for client devices having performance
ratings below a defined lower threshold, and a third (“inter-
mediate” output stream for client devices having performance
ratings intermediate between the upper and lower threshold.
Any suitable performance measure may be used, for example,
arating as produced by the Windows™ Performance Monitor
in the Windows 7™ operating system, and similar bench-
marks.

The frame controller module 210 may generate the mul-
tiple output streams at different frame rates based on a base-
line frame rate from the virtual environment engine. The
baseline or input frame rate from the engine 208 should
generally be the highest rate and include the greatest amount
of detail. The module 210 may further synchronize different
frame rates in different output streams so that they remain
synchronized over time. For a simple example, to reduce the
frame rate in half the frame controller 210 may simply delete
every other frame of the input steam from the engine 208.
Other reduction ratios may be obtained by deleting a different
proportion of frames in a regular pattern. The frame controller

US 9,007,362 B2

7

210 may ensure that no critical information is deleted from an
output stream by, for example, by copying any critical data
from a deleted frame to an undeleted frame. In the alternative,
or in addition, the engine 208 may control the output stream
so that critical data is place in designated frames, for example
in every i” fram, where “1” is an integer between 2 and 10 (or
some other upper bound.) In addition to reducing frame rates,
the frame controller module 210 may adjust a level of detail or
number of objects, or other features included in an output
stream to reduce processing demands on slower processors,
as described in more detail elsewhere herein. The frame con-
troller 210 may perform other operations as described herein
to provide a customized output stream to different client
devices based on the client devices’ respective processing
power, as described in more detail elsewhere herein.

Although depicted on the server 202, it should be appreci-
ated that aspects of a frame controller module may be imple-
mented on a client device to process an input stream for the
client only. In such case, however, the frame controller opera-
tions on the client should be designed to cause a net decrease
in demand on the client processing system. For example, a
simple reduction in frame rate by deleting or ignoring every
i non-critical input frame may be implemented on a client
device to achieve a net increase in perceived performance at
the client, while more complex processing may need to be
performed at a server component. In designing a system 200,
a programmer may allocate performance of frame control
tasks among client and server components to optimize overall
performance of the system. It should be appreciated that, in
general, a virtual environment client application may be
downloaded to each client device to perform tasks conven-
tionally allocated to the client side, and such applications may
be modified to enable the client to perform operations in
support of the methods disclosed herein.

The portal module 212 may direct different output streams
from the frame controller 210 to different clients, based on a
performance measure for the client. Accordingly, the portal
module 212 may receive a performance report for each client,
for example by manual entry of a user estimate, by automatic
or semi-automatic report from a performance-measuring
application operating on each client, or by some combination
of'the foregoing. If no performance measure is available for a
particular client, the portal 210 may provide a default stream
to such client.

The present technology may be used to handle generation,
display, and maintenance of a virtual environment with sub-
stantial amounts of user generated content (for example,
areas, textures, props, clothing, models, embedded web
pages, Flash™ content, etc.) such that it is extremely difficult
to effectively predict user behavior, user needs, where a user
will be or what they will encounter. Existing art is unable to
provide an acceptable user experience in the face of these
factors. The technology allows optimization of the user expe-
rience and virtual environment, prioritizing the factors most
important to the specified area and virtual environment, such
as frame rate, texture resolution, quality or presence of
streaming audio or video, or other elements.

In an embodiment, the loads on the server, network, and
key components of the user’s machine are monitored, often
including the graphics card (GPU), CPU, GPU memory, and
CPU memory. As the user moves the avatar into a specified
area and points the avatar in a particular direction, the tech-
nology may be used to granularly change elements such as
frame rate, texture resolution, quality or presence of stream-
ing media, process priority, affinity or number of cores on the

20

25

30

35

40

45

50

55

60

65

8

CPU and/or GPU utilized, all in order to improve perfor-
mance elements that the designer and/or user desire be
improved.

The technology goes beyond allowing the user to manually
set various quality settings such as number of avatars to
render in a virtual space, texture and screen resolution, anti-
aliasing and other factors. Such static or manually elected
options are insufficient to deliver an optimized performance
in an unpredictable and dynamic virtual environment.
Instead, a server and/or client module dynamically sets qual-
ity settings for the various elements based on the desired
performance for the user even under stressful situations such
as live events with many attendees, streaming video and audio
feeds, complex custom textures, or other factors.

A server or client module may include a component that
measures and alters the virtual environment frame rate and/or
video frame rate of only certain portions of the environment.
For example, an avatar engaged in virtual hunting might be
presented an environment in which the rifle sight and the
permissible target animals are refreshed 60 times per second,
but background non-target elements, such as vehicles on a
road passing in the background, may be refreshed only 15
times per second.

A server or client module may further include a component
that dynamically alters the elements rendered within an envi-
ronment in order to achieve a target frame rate. The alteration
may include slowing the update rate for non-critical elements,
hiding or simply not rendering distant or other non-critical
elements, rendering non-critical elements in a static manner,
or otherwise throttling the CPU/GPU/Network requirements
by altering the rendering and/or updating strategies.

One application of the technology is illustrated using a
limited subset of the Utherverse VW W virtual environment as
follows: A virtual environment is provided with a large sta-
dium capable ot holding a sufficiently large number of avatars
that the rendering capabilities of many user machines may be
exceeded. The environment also contains a virtual café with a
much smaller capacity, a virtual movie theater configured for
1080P high definition streaming, and a street area that varies
in population and configuration as users alter elements. The
large stadium may be configured to prioritize first streaming
content from the stage, then communication between avatars
near other avatars, then rendering of the largest number of
avatars possible without degrading their textures or appear-
ance beyond a set point. A target minimum frame rate of 60
frames per second may be set when the user is viewing the
stage (or for a certain area of the stage only) and a target
minimum frame rate for other elements may be set to 20
frames per second. A user entering the large stadium may
enter via a side door and naturally have in her field of view
only 10 other avatars. The frame rate, rendering quality, and
number of avatars may at that point not be limited by resource
constraints. As the user turns toward the stage, the number of
avatars visible may increase to 100, but the stage is not yet
populated. The target frame rate for an empty stage may be
the same as the other content, and the system may decrease
the number of avatars visible to equal the largest number of
nearby avatars possible without degrading frame rate below
20 frames per second or rendering quality below the target. As
the pre-concert music begins to stream in, the number of
avatars visible may be reduced to accommodate the extra
requirements for rendering the streaming music. When the
band takes the stage, the more distant avatars are no longer
displayed, although it may sometimes be preferable to slowly
dissolve or fade the more distant avatars to prevent a visually
distracting or discontinuous effect. The target frame rate
when viewing the stage may increase to 60, and the rendering

US 9,007,362 B2

9

quality and number of other elements may be reduced until
the target frame rate is achieved. If the user turned her avatar
to face another avatar operated by a friend, and the stage
therefore become no longer visible according to her new point
of view, the system may display more avatars in the distance
as the rendering requirements for the stage may no longer be
in place.

If'the user then navigates the avatar to a different part of the
virtual environment, for example to the café, the rules may be
set differently, perhaps prioritizing high quality rendering of
art props. For example, if the café had hanging virtual art that
was for sale, either as a virtual object or as a real world object
corresponding to the virtual object, rendering of the art may
be given a high priority. In such a case, a lower frame rate
might be allowed in order to permit higher quality rendering.
The importance of inter-avatar communication in such an
environment might be heightened, in which case nearby ava-
tars might be rendered in a higher quality, or, during commu-
nication, at a higher frame rate.

For further example, for an avatar attending a virtual movie
theater, a rule set implemented by a frame controller module
at the server and/or client may prioritize streaming at the
maximum resolution of the user display. For example, a user
with a 1280x1024 monitor may be set to receive less than the
full 1920x1080 quality possible with 1080P content. The rule
set may further specify that the virtual environment frame rate
match the source frame rate for the streaming media. For
example, movies may stream at 24 frames per second while
sports might stream at 60 frames per second. In such a case,
when the user computer (or server) is incapable of supporting
high resolution avatar textures and a large number of props
and avatars concurrently with streaming content, the frame
controller component reduces the texture quality and number
of props and avatars until the target frame rate and resolution
can be achieved for the streaming content. The rules may also
be configured so that there are minimum qualities below
which otherwise prioritized content is served at a lower qual-
ity—for example, the illusion of a virtual environment is lost
if no props or avatars are rendered, so a minimum number of
props or avatars might be prioritized above the highest quality
rendering of the streamed content.

All of the rule sets implemented by a frame controller
component may be configurable by the client or by the
designer of the virtual environment. It may be desirable for
friends, associates, or other avatars or elements identified by
the user to be granted priority. So using the theater example,
a user might attend a movie with her friend, and the friend
may be prioritized, and thus always rendered, and where
possible rendered at a higher quality, than a non-affiliated
avatar or element.

Using the example of the street area, the avatar may enter
the street area. The user in such a case may encounter varying
elements, events, and strains on the user’s system. For
example, the street may be relatively deserted and then a
movie ends and numerous avatars enter the street. During
planned events, such as a parade, the background rules may
be temporarily altered to prioritize different elements. During
unplanned events, the nature of the event or environmental
conditions may be compared to a database of events or con-
ditions for which there are established rule sets for frame
control, and the best matching rule set utilized. The changes
users make to the rule set in response to the event may also be
retained in a database for use, either directly or as part of a
heuristic or even averaging approach to developing rules for
later, similar events or conditions.

In circumstances where the user is in proximity to other
affiliated users (such as friends participating in a virtual envi-

20

25

30

35

40

45

50

55

60

65

10

ronment from clients placed at the same location, people on a
date, or similar situations), the processes running on the affili-
ated user machines may communicate their current rule sets
for frame control and actual rendering and conditions so that
the users may opt to experience the event with nearly identical
conditions. As an example, if a soldier is deployed overseas
and is dating another soldier stationed on a base in the U.S.,
they may desire to go to a virtual art show and concert
together. The overseas soldier may have a more powerful
computer, but the domestic soldier may have a higher speed
network connection. The quality of the streaming content
may be reduced for both users to the highest level that the
overseas soldier may be able to obtain. Similarly, the number
of avatars and the quality of the artwork rendered may be
reduced to the maximum quality that the overseas soldier’s
computer could render. Optionally, a selectable signal may be
provided to a client device where the frame rate or quality is
being intentionally degraded so that the user can opt to turn
off the degradation, losing a portion of the shared experience
in the process. Such a selectable option may also enable a user
to only tie certain elements to the maximum capability of
affiliated users, while setting other elements independently.
For example, frame rate may be desirable to set indepen-
dently, while the level of detail or other appearance factor
may be shared. The system may further provide an option for
delivering an experience for one or more elements within a
defined similarity to the experience of the other user, for
example asking that the streaming content be delivered within
25% of the resolution delivered to the other user. In an
embodiment, the number of avatars and other virtual environ-
ment items visible to affiliated users may be kept nearly
identical. In another implementation, the user processes may
communicate with each other as to the actual identities of the
avatars and other elements being rendered, so that each user
sees the same avatars and elements as the other. To implement
this variant, the server may generate the visible avatars and
elements from a point approximately midway between the
locations of the affiliated avatars.

The use of a dynamic rule set for granular adjustments by
a frame controller component is preferably implemented in
conjunction with user preferences that allow alterations to the
rule set by the user. This is particularly important within a
virtual 3D environment where different humans perceive dif-
ferent elements as critical to creating a realistic environment.
For example, certain users may become motion sick with a
low frame rate, and for those users, viewing 2D content (such
as a movie) within a 3D environment may be unpleasant
unless the 3D elements are rendered at a higher frame rate,
even if that means that the 2D elements are rendered at alower
resolution. Similarly, certain users may have a preferred use
for the environment, such as virtually skateboarding through
the environment, and may need to default to a higher frame
rate even in areas where a user navigating on virtual foot may
prefer a higher resolution or rendering quality.

In an embodiment, a component implements a slow tran-
sition between rule sets, so that there are no jarring visual
discontinuities as avatars drop in quality or number, for
example, in an unrealistic manner. One method for avoiding
jarring transitions may take advantage of shifts in the field of
vision for the avatar. So, for example, if the software deter-
mines that the number of avatars must be reduced because the
frame rate is below target, the software may delay the reduc-
tion, or slowly implement the reduction. When the avatar
turns to face a different direction, however, the reduction may
be fully (or more rapidly) implemented, as avatars drop out of
the natural field of view of the avatar and new areas come into
the field of view. For example, if the software needed to

US 9,007,362 B2

11

reduce the number of visible avatars to 20 or fewer to main-
tain the frame rate, when the avatar turned to face a friend to
her left, avatars on the right may naturally disappear from
view. As the new area is drawn, fewer avatars may be ren-
dered. When the avatar turned back to the right, the excess
avatars may not be rendered.

In an embodiment, the virtual environment server may
prioritize avatars and elements by distance from the user,
which may be customized for a client or group of clients using
a frame controller module. More distant avatars and elements
may be removed before closer elements such as in level of
detail control. In this implementation, the frame controller
component may implement a different level of detail rule set
based on a defined performance class of a client device or
group of client devices.

In the alternative, or in addition, a frame controller com-
ponent may alter the perspective or distances within the vir-
tual world to move avatars and elements to an apparently
more distant place, thus allowing rendering at a lower quality
or lower refresh rate without degrading the user experience.
Using the street scene as an example, avatars may be posi-
tioned on second story balconies or behind second story win-
dows. Even a minor increase in building height may make
those avatars more distant and thus require fewer resources to
render textures and other elements. In an aspect of this fea-
ture, a virtual environment server may slowly change a per-
spective or location of avatars in a scene, and an maintain
perspective changes at sufficiently small increments per
frame so as to minimize detracting from a general verisimili-
tude of the environment. Alternatively, perspective changes
may be made more aggressively, for example to minimize the
time required to bring operating parameters closer to target.

Generally, it may be desirable to use web cams or other
technology capable of following, observing or predicting eye
movement in the user. Changes to rendering rules may pref-
erably be implemented first, or at least more rapidly, in areas
that are not currently being viewed by the actual user, or are
not the clear area of focus of the actual user, even if the user
is capable of seeing them in peripheral or non-central areas of
vision. This may be combined with more rapidly implement-
ing rule changes when the avatar looks away from an area to
maximize the speed with which rendering changes are imple-
mented. Because such user feedback is necessarily user-spe-
cific, a system may be designed to implement this feature at
the client level. In an alternative, an output stream by be
configured to produce multiple output streams depending on
a general area of user focus, for example, center, upper left,
upper right, lower right, or lower left. Then, a portal compo-
nent of an environment server may select an appropriate
output stream based on feedback from the client indicating an
area of focus. A client application may track eye movements
at the client device and report a general focus area periodi-
cally to the portal component, for example, every % or %5
second.

In another aspect, a system may be configured to use dis-
tributed rendering to move rendering tasks away from
stressed components. While this may be done within a local
area network or across a WAN, in a peer-to-peer implemen-
tation clients with extra computer capacity may be enabled to
share that capacity with clients whose computing compo-
nents are stressed. An accounting system may beused to track
borrowed rendering capability and to change money, virtual
currency, or computing time as a method for compensating
the user for sharing computing power. A barter system is
anticipated to be a method preferred by users, wherein indi-
vidual users agree to share computing power, preferably with-
out a strict accounting between them. To better facilitate such

20

25

30

35

40

45

50

55

60

65

12

a system, users with similar usage patterns, computing
devices, network connections, or geographic locations may
be paired or grouped. A processing sharing system may be
constrained by the speed of network connections between
cooperating peers, which may be tracked and used to control
the degree to which processing power is distributed. For
example, a peer device with surplus processing power may be
user to process every i” virtual environment frame, to the
extent that the time T required for the consuming client to
obtain each processed i” frame from the peer client and inte-
grate it into a output video stream for display is reliably less
than i/kR, where i is an integer, k is a margin of reliability
factor set at one or greater, and R is the frame rate per unit
time. Thus, for example, a peer processing system may mea-
sure T and calculate i accordingly based on known values of
k and R for a shared peer-to-peer processing implementation.

A variant is for task sharing between users viewing the
same scene (such as the associated avatars of the affiliated
users described above). For example, associated avatars
where the rendering rules are merged to create a shared expe-
rience could split the rendering tasks, with each user render-
ing some of the elements for the user. Contrary to simply
distributing computing power, such a shared rendering tech-
nique means that the perspectives of each avatar may be
considered in determining what tasks to share, since the 3D
special relationships between avatars and items mean that an
item rendered from the perspective of one avatar is not nec-
essarily one that will appear properly for an avatar viewing
from another perspective. To illustrate this problem, for
example using in a simple scene where a couple of avatars,
designated “A-Avatar” and “B-Avatar”, may be modeled sit-
ting in virtual chairs 3 feet apart, facing in the same direction,
in avirtual coffee house, both facing a stage, with A- Avatar on
the left. Distant items on the stage may appear nearly identical
(or, given sufficient distance and low enough resolution, actu-
ally identical) to both avatars. However, an item three feet in
front and three feet to the left of A-Avatar is rendered quite
differently for B-Avatar, for whom the same object is 3 feet in
front but six feet to the left. In an embodiment, using this
example for illustration only, a server component may deter-
mine using a geometric calculation the amount of distortion
to proper perspective caused by simply inserting an item that
A-Avatar rendered from its perspective into the display for
B-Avatar. A rule set is may then be applied by a frame con-
troller component whereby an amount of acceptable distor-
tion for a frame is compared to the predicted distortion caused
by simply importing a rendered object from a neighboring
avatar’s perspective. Where the amount of distortion is less
than that provided for by the rule set, and where the other
benefits of such imported rendering of the object outweigh
the costs, the frame controller component may provide an
output stream that avoids rendering from the second perspec-
tive. For example, if the network connection is nearing a
target maximum, component may determine that the costs
may be high, or conversely if nearing GPU capacity, the
benefits may be high. The frame controller component may
make a determination as to whether to share rendering tasks in
this manner according to whatever formula is adopted,
including a set formula, one modifiable by the user or opera-
tor, or one that varies according to situation. The network lag
time and differences in processing speeds may also to be
weighed by a frame controller component in determining
whether there is a net benefit or cost, in light of the reduction
in verisimilitude caused by differential rendering speeds for
certain elements. To reduce this risk, local rendering or dis-
play of objects may be delayed or degraded (or even sped up
or improved) to better match the locally and remotely ren-

US 9,007,362 B2

13

dered objects in quality and speed of appearance and
response. Implementation of this system may be made on a
peer-to-peer basis between the client nodes, allowing the
clients to negotiate task sharing in a manner that dynamically
varies with the current network bandwidth and computer
processing capabilities of the respective client devices.

A monitoring element that constantly provides feedback to
the software processes and/or to the server or client device
may be included in the system 200. The monitoring element
may monitor rendering quality, frame rates, and other ele-
ments related to the quality of the virtual environment simu-
lation, as well as monitoring the strain that system, server, and
network resources are operating under. A frame controller
component may adjust frame rate or other elements of output
streams in response to the monitoring feedback, for example
by reducing frame rates or level of detail slightly for all output
streams, in response to monitoring indicating an undesirably
high level of system strain. System strain may be defined
using various metrics, for example, a proportion of partici-
pating client devices that have apparently lost synchrony with
the virtual environment process.

In another variant, a client device or server component may
pre-render elements in the virtual environment based on
anticipated need for a client or group of client devices. For
example, a client device controlling a avatar that is modeled
as walking toward a crowded street scene but has not yet
arrived may be using only 10% of the client computer’s
capacity. The computer may anticipate a need for elements in
the street scene, identical the most likely travel paths and eye
direction, and utilize some or all of the remaining 90% of
capacity to pre-render the elements in the scene least likely to
move. Avatars themselves may be poor candidates for pre-
rendering due to unpredictable movement, but static elements
such as walls or system-controlled velocity objects may be
better candidates since they don’t move or move in a predict-
able fashion. Avatars and other elements that have not
recently moved may be pre-rendered as well, optionally after
the pre-rendering of the more reliably predicted elements is
complete. To maximize the likelihood that such pre-rendering
will be useful, and to minimize the amount of perspectives
that pre-rendering is required for, an avatar, upon entering a
pre-rendered area, may have constraints placed on move-
ment. The constraints may be absolute (i.e. you may walk
only along one or several set paths), or may be made imper-
ceptible or minor limitations to control whereby the user has
to exert more than the normal amount of control input to cause
a movement outside of the pre-rendered area. This may pre-
vent, for example, normal accidental “wobble” that takes
place in moving an avatar from causing the avatar to “wobble”
in a manner that causes the pre-rendered elements to need to
be rendered from a different perspective. Previous “wobble”
patterns from the same avatar may optionally be used in
designing the preferred and limited path of the avatar to make
the avatar appear to be moving as if controlled by a human.
For example, a virtual environment server may reproduce a
wobble that an avatar normally has, because human-con-
trolled avatars don’t normally walk in a precisely straight
robotic-type line.

Without detriment to the detailed algorithms for performed
by one or more computers as described above, methodologies
that may be implemented in accordance with the disclosed
subject matter, may be further understood with reference to
various flow charts illustrating aspects of the foregoing algo-
rithms in summary form. For purposes of simplicity of expla-
nation, methodologies are shown and described as a series of
acts in blocks, but the claimed subject matter is not limited by
the number or order of blocks, as some blocks may occur in

20

25

30

35

40

45

50

55

60

65

14

different orders and/or at substantially the same time with
other blocks from what is depicted and described herein.
Moreover, not all illustrated blocks may be required to imple-
ment methodologies described herein. It is to be appreciated
that functionality associated with blocks may be imple-
mented by software, hardware, a combination thereof or any
other suitable machine (e.g., device, system, process, or com-
ponent). Additionally, it should be further appreciated that
methodologies disclosed throughout this specification are
capable of being stored as encoded instructions and/or data on
non-transitory computer-readable medium to facilitate trans-
porting and transferring such methodologies to various
devices.

As used in this application, the terms “component”, “mod-
ule”, “system”, and the like are intended to refer to a com-
puter-related entity, either hardware, a combination of hard-
ware and software, software, or software in execution. For
example, a component may be, but is not limited to being, a
process running on a processor, a processor, an object, an
executable, a thread of execution, a program, and/or a com-
puter. By way of illustration, both an application running on
a server and the server can be a component. One or more
components may reside within a process and/or thread of
execution and a component may be localized on one com-
puter and/or distributed between two or more computers.

A server for a virtual world environment may perform a
method 300 for adaptable generation of virtual environment
frames, as shown in FIG. 3. The method 300 may include, at
302, identitying, by a computer, a target frame rate of virtual
environment output, the output comprising a known number
of virtual objects modeled in the virtual environment and
included in the output to be transmitted to a client device. The
output may comprise data defining a current state of virtual
environment at a point in time determined by a most recent
refresh cycle. The refresh cycle may occur at an original or
baseline frame rate. The virtual objects may be referred to in
the data and be partially defined by the output data, while
other aspects of the virtual objects may be defined in a sepa-
rate memory location. For example, a server may provide data
defining an identified object’s location, orientation, or other
feature of a present transitory state for the object, while more
permanent aspects of the object, for example its geometrical
orarmature properties may be retained in a memory ofaclient
device and in the memory of the server, but need not be
included in the virtual environment output.

The method 300 may further include, at 304, determining,
by the computer, whether a maximum frame rate at which the
client device is capable of displaying the virtual environment
output is less than the target frame rate. The maximum frame
rate may be determined by user input or by performance
measurement of some kind, as described elsewhere herein.
The target frame rate may be the same for all devices within
aparticular class of client devices, but may vary depending on
common factors such as network conditions. The target frame
rate may vary depending on the class of the client device
based on capability criteria.

The method 300 may further include, at 306, modifying, by
the computer, a number of objects in the virtual environment
output to prepare modified output configured for achieving
the target frame rate at the client device, in response to deter-
mining that the maximum frame rate is less than the target
frame rate. For example, the computer may remove one or
more identifiers and related transient state data for one or
more objects from the virtual environment data directed to a
particular client device or group of client devices. Thus, the
client or group may avoid the processing overhead required to
generate and render an output video frame that includes the

US 9,007,362 B2

15

removed object. This may, in turn, enable the client or client
group to achieve the target frame rate. The achieved frame
rate may be reported to the server and the number or type of
objects removed may be adjusted accordingly. It should be
appreciated that omitting objects that would otherwise be
included from the output based on feedback to achieve the
target frame rate is functionally equivalent to removing such
objects, and may also be performed.

FIGS. 4-5 show further optional operations or aspects 400
or 500 that may be performed by the server in conjunction
with the method 300, or in some cases independently of said
method. The operations shown in FIGS. 4-5 are not required
to perform the method 300. The operations are independently
performed and not mutually exclusive. Therefore any one of
such operations may be performed regardless of whether
another downstream or independent upstream operation is
performed. If the method 300 includes at least one operation
of FIGS. 4-5, then the method 300 may terminate after the at
least one operation, without necessarily having to include any
subsequent downstream operation(s) that may be illustrated.

As shown in FIG. 4, the method 300 may include one or
more of the additional operations 400. In an aspect, the
method 300 may include, at 402, selecting objects for
removal in order of a predetermined priority. The priority may
be predetermined based on a hierarchical scheme customized
for each user. For example, the server may designate each
user’s avatar as of the highest priority for that user, followed
by critical elements required to maintain verisimilitude of the
environment, followed by favorite objects designated by a
user expressly or implicitly (e.g., accessories, avatars of des-
ignated friends, etc.), followed by avatars of unrelated per-
sons, followed by inanimate objects belonging to other per-
sons, and so forth.

It may sometime be desirable to limit the removal of
objects. The method 300 may further include, at 404, retain-
ing all objects having priority above a threshold value in the
modified output, regardless of whether or not the client device
can achieve the target frame rate for the modified output. In
another aspect, the method may include, at 406, determining
which objects to remove from the virtual environment output
at least in part based on a virtual distance between each of the
objects and an avatar for a current user of the client device.
More detailed aspects and algorithms for selected objects to
be effectively removed from an output stream have been
disclosed in more detail above, and need not be repeated here.

As shown in FIG. 5, the method 300 may include one or
more of the additional operations 500. In an aspect, the
method 300 may include, at 502, defining the target frame rate
in response to user input to the client device. For example, a
user may provide an indication of a desired target frame rate
by interacting with a user interface component of a client
application. The client application may provide the indication
to a server component, which may execute the modification to
the output.

In another aspect, the method 300 may further include, at
504, modifying the target frame rate for at least one client, by
periodically removing a non-critical frame from the virtual
environment output to prepare the modified output. The
server may provide certain designated frames as including
enhanced but non-critical data, or may flag critical data within
each frame. Critical data may include, for example, informa-
tion that is necessary at the client device to maintain continu-
ity of the virtual environment. Mere gradual changes in posi-
tion are not generally critical, but the reporting of certain
events triggering changes that cannot be interpolated from
other data may be critical. For example, text dialog may be
critical is supplied in only one refresh cycle, or a change in

20

25

30

35

40

45

50

55

60

65

16

avatar state such as an aware of points or the like may be
critical. Whether or not particular information is critical will
depend on system design. In any case, the modification pro-
cess, when removing frame data, may use an algorithm to
identify frames marked as non-critical for removal, or may
process each frame to identify critical data on the fly.

In another aspect, the method 300 may further include, at
506, defining the target frame rate differently for different
client devices based on maximum frame rates for respective
ones of the different client devices. As previously noted, the
target frame rate need not be the same for all client devices or
for all classes of client device. In a related aspect, the method
300 may further include, at 508, serving multiple output
streams according to different target frame rates for the
respective ones of the different client devices. For example, a
first client may be served an a first output stream at a target
rate equal to the baseline (maximum) frame rate available at
the virtual environment server. A second client may be served
a second output stream at one-half (or some other fraction) of
the baseline rate, by removal of non-critical frames. The
method 300 may further include, at 510, synchronizing the
different target frame rates to a baseline frame rate of the
virtual environment output. Continuing the foregoing
example, if the frame rate of the first output stream is 60
cycles per second, by removing every other frame a synchro-
nized output stream having a designated frame rate of 30
cycles per second may be provided to the second client. Both
output streams share every other data frame, which may
include all critical data. So long as both the first and second
clients are able to achieve the respective target frame rates of
60 and 30 cycles per second, the virtual environment experi-
ence will remain synchronized at both clients. However, the
first client will experience smoother animation. The server
may treat input from both clients with the same priority,
regardless of the different output rates, so that neither client
enjoys any time advantage in the input of data to the virtual
environment process.

With reference to FIG. 6, there is provided an exemplary
apparatus 600 that may be configured virtual environment
server operating a virtual environment application, or as a
processor or similar device for use within the virtual environ-
ment server, for adaptable generation of user frames in
response to client feedback. The apparatus 600 may include
functional blocks that can represent functions implemented
by a processor, software, or combination thereof (e.g., firm-
ware).

In one embodiment, the apparatus 600 may include an
electrical component or module 612 for identifying a target
frame rate of virtual environment output, the output compris-
ing a known number of virtual objects modeled in the virtual
environment and included in the output to be transmitted to a
client device. For example, the electrical component 612 may
include at least one control processor 602 coupled to one or
more memory components 604 with instructions for identi-
fying a target frame rate. The electrical component 612 may
be, or may include at least one control processor 602 operat-
ing an algorithm. The algorithm may operate in an application
to perform detailed operations for identifying a target frame
rate of virtual environment output, for example as described
in connection with FIG. 3 above. The component may include
other aspects, such as the hardware and software components
illustrated in FIGS. 1-2 or otherwise disclosed above for
providing virtual environment output comprising a known
number of virtual objects modeled in the virtual environment,
and for identifying a target frame rate of virtual environment
output.

US 9,007,362 B2

17

The apparatus 600 may include an electrical component
614 for determining whether a maximum frame rate at which
the client device is capable of displaying the virtual environ-
ment output is less than the target frame rate. For example, the
electrical component 614 may include at least one control
processor 602 coupled to a memory 604 holding instructions
for determining whether a maximum frame rate at which the
client device is capable of displaying the virtual environment
output is less than the target frame rate according to more
detailed algorithms described herein. The electrical compo-
nent 614 may be, or may include, the at least one control
processor 602 operating an algorithm. The algorithm may
include, for example, receiving performance feedback from a
client device or for a class of client devices, defining a maxi-
mum frame rate based on the performance feedback, and
comparing the maximum frame rate to a previously deter-
mined target frame rate for the device or class of devices to
which the client device belongs. Said component 614 may
include other aspects for determining whether a maximum
frame rate at which the client device is capable of displaying
the virtual environment output is less than the target frame
rate, such as the hardware and software components illus-
trated in FIGS. 1-2 or described elsewhere herein.

The apparatus 600 may include an electrical component
616 for modifying a number of objects in the virtual environ-
ment output to prepare modified output configured for achiev-
ing the target frame rate at the client device, in response to
determining that the maximum frame rate is less than the
target frame rate. For example, the electrical component 616
may include at least one control processor 602 coupled to a
memory 604 holding instructions for modifying a number of
objects in the virtual environment output to prepare modified
output configured for achieving the target frame rate at the
client device, in response to determining that the maximum
frame rate is less than the target frame rate. The electrical
component 616 may be, or may include, the at least one
control processor 602 operating an algorithm. The algorithm
may operate in a processor of a server or client computer to
identify and remove one or more identifiers and related data
for one or more lowest-priority objects from the virtual envi-
ronment output to be provided to the client device, for
example using a data filtering process. In an alternative, the
algorithm may operate to omit the one or more identifiers and
related data for one or more lowest-priority objects from
being placed in the virtual environment output to be provided
to the client device. Said component may include other
aspects for modifying a number of objects in the virtual
environment output to prepare modified output configured for
achieving the target frame rate at the client device, inresponse
to determining that the maximum frame rate is less than the
target frame rate, such as the hardware and software compo-
nents illustrated in FIGS. 1-2 or elsewhere herein.

The apparatus 600 may include similar electrical compo-
nents for performing any or all of the additional operations
400 or 500 described in connection with FIGS. 4-5, which for
illustrative simplicity are not shown in FIG. 6.

In related aspects, the apparatus 600 may optionally
include a processor component 602 having at least one pro-
cessor, which in the case of the apparatus 600 may be con-
figured as a virtual environment hosting component and
optionally incorporated into a network server. The processor
602 may be in operative communication with the components
612-616 or similar components via a bus 610 or similar com-
munication coupling. The processor 602 may effect initiation
and scheduling of the processes or functions performed by
electrical components 612-616. The processor 602 may
encompass the components 612-616, in whole or in part. In

20

25

30

35

40

45

50

55

60

65

18

the alternative, the processor 602 may be separate from the
components 612-616, which may include one or more sepa-
rate processors.

In further related aspects, the apparatus 600 may include a
network interface component 608, for communicating with
multiple clients over a network. The apparatus 600 may
include an input/output port 608 for receiving input for
administrative control of the virtual environment process and
providing a monitoring output for administrative purposes.
The apparatus 600 may include a component for storing infor-
mation, such as, for example, a memory device/component
604. The computer readable medium or the memory compo-
nent 604 may be operatively coupled to the other components
of'the apparatus 600 via the bus 610 or the like. The memory
component 604 may be adapted to store computer readable
instructions and data for performing the activity of the com-
ponents 612-616, and subcomponents thereof, or the proces-
sor 602, or the additional aspects 400 or 500, or other methods
and operations disclosed herein. The memory component 604
may retain instructions for executing functions associated
with the components 612-616. While shown as being external
to the memory 604, it is to be understood that the components
612-616 can exist within the memory 604.

In another aspect of the technology, a client device may
perform certain operations in cooperation with a server com-
puter that provides virtual environment data. For example, a
client computer may perform a method 700 as shown in FIG.
7. The method 700 may include, at 702, setting, by a client
device comprising a computer, a target frame rate for virtual
environment data received from a server, the data comprising
a known number of virtual objects modeled in the virtual
environment and included in the data received from the
server. The method 700 may further include, at 704, deter-
mining, by the client device, whether a maximum frame rate
at which the client device is capable of displaying the virtual
environment data is less than the target frame rate, for at least
one portion of the data. The method 700 may further include,
at 706, modifying, by the client device, a number of objects in
the virtual environment data to prepare modified data config-
ured for achieving the target frame rate at the client device, in
response to determining that the maximum frame rate is less
than the target frame rate. The method 700 may include other
aspects and operations as described in more detail elsewhere
herein, for example in connection with FIGS. 1-5 with respect
to a client device or optionally by a client device.

With reference to FIG. 8, there is provided an exemplary
apparatus 800 that may be configured as a client receiving
from a virtual environment server operating a virtual environ-
ment application, or as a processor or similar device for use
within the client device, for adaptable generation of user
frames in response to client feedback. The apparatus 800 may
include functional blocks that can represent functions imple-
mented by a processor, software, or combination thereof (e.g.,
firmware).

In one embodiment, the apparatus 800 may include an
electrical component or module 812 for setting a target frame
rate for virtual environment data received from a server, the
data comprising a known number of virtual objects modeled
in the virtual environment and included in the data received
from the server. For example, the electrical component 812
may include at least one control processor 802 coupled to one
or more memory components 804 with instructions for set-
ting a target frame rate. The electrical component 812 may be,
ormay include at least one control processor 802 operating an
algorithm. The algorithm may operate in an application to
perform detailed operations for setting a target frame rate and
for using the data comprising a known number of virtual

US 9,007,362 B2

19

objects modeled in the virtual environment to generate a
display output. The component may include other aspects,
such as the hardware and software components illustrated in
FIGS. 1-2 or otherwise disclosed above for using virtual
environment output comprising a known number of virtual
objects modeled in the virtual environment, and for setting a
target frame rate of virtual environment output.

The apparatus 800 may include an electrical component
814 for determining whether a maximum frame rate at which
the client device is capable of displaying the virtual environ-
ment data is less than the target frame rate, for at least one
portion of the data. For example, the electrical component
814 may include at least one control processor 802 coupled to
amemory 804 holding instructions for determining whether a
maximum frame rate at which the client device is capable of
displaying the virtual environment output is less than the
target frame rate according to more detailed algorithms
described herein. The electrical component 814 may be, or
may include, the at least one control processor 802 operating
an algorithm. The algorithm may include, for example, mea-
suring performance at the client device or receiving user input
defining client performance characteristics, defining a maxi-
mum frame rate based on the performance information, and
comparing the maximum frame rate to a previously deter-
mined target frame rate for the client or class of devices to
which the client device belongs. Said component 814 may
include other aspects for determining whether a maximum
frame rate at which the client device is capable of displaying
the virtual environment output is less than the target frame
rate, such as the hardware and software components illus-
trated in FIGS. 1-2 or described elsewhere herein.

The apparatus 800 may include an electrical component
816 for modifying a number of objects in the virtual environ-
ment output to prepare modified output configured for achiev-
ing the target frame rate at the client device, in response to
determining that the maximum frame rate is less than the
target frame rate. Other aspects of the component 816 may be
as described for component 616 of the apparatus 600 shown
in FIG. 6.

The apparatus 800 may include similar electrical compo-
nents for performing adapted ones of the additional opera-
tions 400 or 500 described in connection with FIGS. 4-5, th
the extent possible applicable for a client device, which for
illustrative simplicity are not shown in FIG. 8.

In related aspects, the apparatus 800 may optionally
include a processor component 802 having at least one pro-
cessor, which in the case of the apparatus 800 may be con-
figured as a client device and may include a client application
for providing virtual environment output from aggregate data
provided from a virtual environment server. The processor
802 may be in operative communication with the components
812-816 or similar components via a bus 810 or similar com-
munication coupling. The processor 802 may effect initiation
and scheduling of the processes or functions performed by
electrical components 812-816. The processor 802 may
encompass the components 812-816, in whole or in part. In
the alternative, the processor 802 may be separate from the
components 812-816, which may include one or more sepa-
rate processors.

In further related aspects, the apparatus 800 may include a
network interface component 808, for communicating with
multiple clients over a network. The apparatus 800 may
include an input/output port 808 for receiving input for
administrative control of the virtual environment process and
providing a monitoring output for administrative purposes.
The apparatus 800 may include a component for storing infor-
mation, such as, for example, a memory device/component

20

25

30

35

40

45

50

55

60

65

20

804. The computer readable medium or the memory compo-
nent 804 may be operatively coupled to the other components
of'the apparatus 800 via the bus 810 or the like. The memory
component 804 may be adapted to store computer readable
instructions and data for performing the activity of the com-
ponents 812-816, and subcomponents thereof, or the proces-
sor 802, or other methods and operations disclosed herein for
performance by a client device. The memory component 804
may retain instructions for executing functions associated
with the components 812-816. While shown as being external
to the memory 804, it is to be understood that the components
812-816 can exist within the memory 804.

The steps of a method or algorithm described in connection
with the disclosure herein may be embodied directly in hard-
ware, in a software module executed by a processor, or in a
combination of the two. In one or more exemplary designs,
the functions described may be implemented in hardware,
software, firmware, or any combination thereof. If imple-
mented in software, the functions may be stored as one or
more instructions or code on a computer-readable medium. A
software module may reside in a non-transitory computer
readable medium, for example, RAM memory, flash memory,
ROM memory, EPROM memory, EEPROM memory, regis-
ters, magnetic media (e.g., hard disk or tape), and optical
medium (e.g., a removable optical disc such as DVD or Blu-
Ray), or any other form of computer-readable storage
medium known in the art. An exemplary storage medium may
be coupled to the processor such that the processor can read
information from, and write information to, the storage
medium. In the alternative, the storage medium may be inte-
gral to the processor.

The foregoing examples illuminate certain aspects of the
present technology. The scope of the present technology may
extend beyond these examples in both details and generalities
within the scope of the present disclosure.

What is claimed is:
1. A method for adaptable generation of virtual environ-
ment frames in a virtual environment by a computer, com-
prising:
identifying, by a computer, a target frame rate of virtual
environment output, the output comprising a known
number of virtual objects modeled in the virtual envi-
ronment and included in the output to be transmitted to
a client device;

determining, by the computer, whether a maximum frame
rate at which the client device is capable of displaying
the virtual environment output is less than the target
frame rate; and

modifying, by the computer, a number of objects in the

virtual environment output to prepare modified output
configured for achieving the target frame rate at the
client device, in response to determining that the maxi-
mum frame rate is less than the target frame rate,
wherein each of the objects is one of an avatar or a
non-avatar prop and the modifying comprises selecting
the each of the objects for removal in order of a prede-
termined priority based on a hierarchical scheme cus-
tomized for each user.

2. The method of claim 1, further comprising retaining all
objects having priority above a threshold value in the modi-
fied output, regardless of whether or not the client device can
achieve the target frame rate for the modified output.

3. The method of claim 1, wherein the objects comprise at
least one avatar displayed within the virtual environment
subject to having its display status altered in order to achieve
a target frame rate.

US 9,007,362 B2

21

4. The method of claim 1, wherein the objects comprise at
least one non-avatar prop displayed within the virtual envi-
ronment subject to having its display status altered in order to
achieve a target frame rate.

5. The method of claim 1, further comprising determining
which objects to remove from the virtual environment output
at least in part based on a virtual distance between each of the
objects and an avatar for a current user of the client device.

6. The method of claim 1, further comprising defining the
target frame rate in response to user input to the client device.

7. The method of claim 1, further comprising modifying
the target frame rate for at least one client, by periodically
removing a non-critical frame from the virtual environment
output to prepare the modified output.

8. The method of claim 7, further comprising defining the
target frame rate differently for different client devices based
on maximum frame rates for respective ones of the different
client devices.

9. The method of claim 8, further comprising serving mul-
tiple output streams according to different target frame rates
for the respective ones of the different client devices.

10. The method of claim 9, further comprising synchroniz-
ing the different target frame rates to a baseline frame rate of
the virtual environment output.

11. An apparatus comprising a processor and a memory
coupled to the processor; wherein the memory holds program
instructions, that when executed by the processor, causes the
apparatus to:

identify a target frame rate of virtual environment output,

the output comprising a known number of virtual objects
modeled in the virtual environment and included in the
output to be transmitted to a client device;
determine whether a maximum frame rate at which the
client device is capable of displaying the virtual envi-
ronment output is less than the target frame rate;

modify a number of objects in the virtual environment
output to prepare modified output configured for achiev-
ing the target frame rate at the client device, in response
to determining that the maximum frame rate is less than
the target frame rate, wherein each of the objects is one
of an avatar or a non-avatar prop; and

select the each of the objects for removal in order of a

predetermined priority based on a hierarchical scheme
customized for each user.

12. The apparatus of claim 11, wherein the memory holds
further program instructions for retaining all objects having
priority above a threshold value in the modified output,

20

25

30

35

40

22

regardless of whether or not the client device can achieve the
target frame rate for the modified output.

13. The apparatus of claim 11, wherein the memory holds
further program instructions for determining which objects to
remove from the virtual environment output at least in part
based on a virtual distance between each of the objects and an
avatar for a current user of the client device.

14. The apparatus of claim 11, wherein the memory holds
further program instructions for modifying the target frame
rate for at least one client, by periodically removing a non-
critical frame from the virtual environment output to prepare
the modified output.

15. The apparatus of claim 11, wherein the memory holds
further program instructions for sharing rendering of the
modified output between peer client devices to enable a client
device to realize the target frame rate.

16. A method for adaptable generation of virtual environ-
ment frames in a virtual environment by a client device,
comprising:

setting, by a client device comprising a computer, a target

frame rate for virtual environment data received from a
server, the data comprising a known number of virtual
objects modeled in the virtual environment and included
in the data received from the server;

determining, by the client device, whether a maximum
frame rate at which the client device is capable of dis-
playing the virtual environment data is less than the
target frame rate, for at least one portion of the data; and

modifying, by the client device, a number of objects in the
virtual environment data to prepare modified data con-
figured for achieving the target frame rate at the client
device, in response to determining that the maximum
frame rate is less than the target frame rate, wherein each
ofthe objects is one of an avatar or a non-avatar prop and
the modifying comprises selecting the each of the
objects for removal in order of a predetermined priority
based on a hierarchical scheme customized for each
user.

17. The method of claim 16, further comprising determin-
ing which objects to remove from the virtual environment
data at least in part based on a virtual distance between each
of the objects and an avatar for a current user of the client
device.

